Journal Papers

  1. Ozsarac, V., Pereira, N., Mohamed, H., Romão, X., & O’Reilly, G. J. (2025). The Built Environment Data Framework for Simulated Design and Vulnerability Modelling in Earthquake Engineering. Earthquake Engineering & Structural Dynamics. https://doi.org/10.1002/eqe.4378 [PDF][Link]

  2. Fukutomi, Y., O’Reilly, G., Nakashima, M., Kanda, K., Kusaka, A., & Ogasawara, S. (2025). Three benefits of “Caution (Yellow Tag)” in SHM-driven condition assessment of buildings: Eight years experience with market-based SHM. Earthquake Spectra, 41(1), 979–994. https://doi.org/10.1177/87552930241296377 [PDF][Link]
  3. Poveda, J., & O’Reilly, G. J. (2025). Seismic loss assessment of existing hotel building in Ecuador. Earthquake Spectra, 41(1), 955–978. https://doi.org/10.1177/87552930241299356 [PDF][Link][Damageable Inventory][SLF Data][Ground Motion Records]
  4. Aristeidou, S., Shahnazaryan, D., & O’Reilly, G. J. (2025). Correlation models for next-generation amplitude and cumulative intensity measures using artificial neural networks. Earthquake Spectra, 41(1), 851–875. https://doi.org/10.1177/87552930241270563 [PDF][Link]
  5. Shahnazaryan, D., Pinho, R., Crowley, H., & O’Reilly, G. J. (2024). The Built Environment Data platform for experimental test data in earthquake engineering. Earthquake Engineering & Structural Dynamics, 53(15), 4627–4640. https://doi.org/10.1002/eqe.4231 [PDF][Link]
  6. Aristeidou, S., Shahnazaryan, D., & O’Reilly, G. J. (2024). Artificial neural network-based ground motion model for next-generation seismic intensity measures. Soil Dynamics and Earthquake Engineering, 184, 108851. https://doi.org/10.1016/j.soildyn.2024.108851. https://doi.org/10.1016/j.soildyn.2024.108851 [PDF][Link]
  7. O’Reilly, G. J., & Goggins, J. (2024). Validation of a Numerical Model for Novel Self-Centring Concentrically Braced Steel Frames. Infrastructures, 9(7), 112. https://doi.org/10.3390/infrastructures9070112 [PDF][Link]
  8. Nafeh, A. M. B., & O’Reilly, G. J. (2024). Fragility functions for non-ductile infilled reinforced concrete buildings using next-generation intensity measures based on analytical models and empirical data from past earthquakes. Bulletin of Earthquake Engineering, 22(10), 4983–5021. https://doi.org/10.1007/s10518-024-01955-4 [PDF][Link]
  9. O’Reilly, G. J., & Shahnazaryan, D. (2024). On the utility of story loss functions for regional seismic vulnerability modeling and risk assessment. Earthquake Spectra, 40(3), 1933–1955. https://doi.org/10.1177/87552930241245940 [PDF][Link]
  10. Aristeidou, S., & O’Reilly, G. J. (2024). Exploring the Use of Orientation-Independent Inelastic Spectral Displacements in the Seismic Assessment of Bridges. Journal of Earthquake Engineering, 28(12), 3515–3538. https://doi.org/10.1080/13632469.2024.2343067 [PDF][Link]
  11. Shahnazaryan, D. and O’Reilly, G.J. (2024) ‘Next-generation non-linear and collapse prediction models for short- to long-period systems via machine learning methods’, Engineering Structures, 306, p. 117801. Available at: https://doi.org/10.1016/j.engstruct.2024.117801. [PDF][Link][PyPI][GitHub]
  12. Shahnazaryan, D., & O’Reilly, G. J. (2024). Appraising the Risk Assessment of Non-Structural Components via Simplified and Machine-Learning-Based Approaches. Journal of Earthquake Engineering, 28(9), 2440–2463. https://doi.org/10.1080/13632469.2024.2314169 [PDF][Link]
  13. O’Reilly, G. J., Hasegawa, K., Shahnazaryan, D., Poveda, J., Fukutomi, Y., Kusaka, A., & Nakashima, M. (2024). On the fragility of non‐structural elements in loss and recovery: Field observations from Japan. Earthquake Engineering & Structural Dynamics, 53(3), 1125–1144. https://doi.org/10.1002/eqe.4066 [PDF][Link]
  14. Nafeh, A. M. B., & O’Reilly, G. J. (2024). Simplified pushover-based seismic loss assessment for existing infilled frame structures. Bulletin of Earthquake Engineering, 22(3), 951–995. https://doi.org/10.1007/s10518-023-01792-x [PDF][Link]
  15. Aristeidou, S., Tarbali, K., & O’Reilly, G. J. (2023). A ground motion model for orientation-independent inelastic spectral displacements from shallow crustal earthquakes. Earthquake Spectra, 39(3), 1601–1624. https://doi.org/10.1177/87552930231180228 [PDF][Link]
  16. Abarca, A., Monteiro, R., & O’Reilly, G. J. (2025). Seismic risk prioritisation schemes for reinforced concrete bridge portfolios. Structure and Infrastructure Engineering, 21(1), 49–69. https://doi.org/10.1080/15732479.2023.2187424 [PDF][Link]
  17. O’Reilly, G. J., Shahnazaryan, D., Dubini, P., Brunesi, E., Rosti, A., Dacarro, F., Gotti, A., Silvestri, D., Mascetti, S., Ducci, M., Ciucci, M., & Marino, A. (2023). Risk-aware navigation in industrial plants at risk of NaTech accidents. International Journal of Disaster Risk Reduction, 88, 103620 [PDF][Link]
  18. O’Reilly, G. J., Nafeh, A. M. B., & Shahnazaryan, D. (2023). Simplified tools for the risk assessment and classification of existing buildings. Procedia Structural Integrity, 44, 1744–1751. https://doi.org/10.1016/j.prostr.2023.01.223 [PDF][Link]
  19. Nafeh, A. M. B., & O’Reilly, G. J. (2023). Simplified pushover-based seismic risk assessment methodology for existing infilled frame structures. Bulletin of Earthquake Engineering, 21(4), 2337–2368. https://doi.org/10.1007/s10518-022-01600-y [PDF][Link]
  20. Fox, M.J. and O’Reilly, G.J. (2023) ‘Exploring the site dependency of fragility functions in risk‐targeted design’, Earthquake Engineering & Structural Dynamics, 52(13), pp. 4148–4163. Available at: https://doi.org/10.1002/eqe.3783. [PDF][Link]
  21. Clemett, N., Carofilis Gallo, W. W., Gabbianelli, G., O’Reilly, G. J., & Monteiro, R. (2023). Optimal Combined Seismic and Energy Efficiency Retrofitting for Existing Buildings in Italy. Journal of Structural Engineering, 149(1). https://doi.org/10.1061/(ASCE)ST.1943-541X.0003500 [PDF][Link]
  22. Abarca, A., Monteiro, R., & O’Reilly, G. J. (2022). Exposure knowledge impact on regional seismic risk assessment of bridge portfolios. Bulletin of Earthquake Engineering, 20(13), 7137–7159. https://doi.org/10.1007/s10518-022-01491-z [PDF][Link]
  23. Gallo, W. W. C., Clemett, N., Gabbianelli, G., O’Reilly, G., & Monteiro, R. (2023). Influence of Parameter Uncertainty in Multi-Criteria Decision-Making When Identifying Optimal Retrofitting Strategies for RC Buildings. Journal of Earthquake Engineering, 27(7), 1769–1794. https://doi.org/10.1080/13632469.2022.2087794 [PDF][Link]
  24. Carofilis Gallo WW, Clemett N, Gabbianelli G, O’Reilly GJ, Monteiro R. Seismic Resilience Assessment for Optimal Integrated Retrofitting of Existing School Buildings in Italy. Buildings 2022. DOI: 10.3390/buildings12060845. [PDF][Link]
  25. O’Reilly GJ, Yasumoto H, Suzuki Y, Calvi GM, Nakashima M. Risk‐based seismic design of base‐isolated structures with single surface friction sliders. Earthquake Engineering & Structural Dynamics 2022. DOI: 10.1002/eqe.3668. [PDF][Link]
  26. Nafeh AMB, O’Reilly GJ. Unbiased simplified seismic fragility estimation of non-ductile infilled RC structures. Soil Dynamics and Earthquake Engineering 2022; 157: 107253. DOI: 10.1016/j.soildyn.2022.107253. [PDF][Link]
  27. Akan OD, O’Reilly GJ, Monteiro R. Simplified modelling and pushover analysis of infilled frame structures accounting for strut flexibility. Earthquake Engineering & Structural Dynamics 2022; 51(6): 1383–1409. DOI: 10.1002/eqe.3620. [PDF][Link]
  28. Shahnazaryan D, O’Reilly GJ, Monteiro R. On the seismic loss estimation of integrated performance‐based designed buildings. Earthquake Engineering & Structural Dynamics 2022. DOI: 10.1002/eqe.3638. [PDF][Link]
  29. Abarca, A., Monteiro, R., O’Reilly, G., Zuccolo, E., & Borzi, B. (2023). Evaluation of intensity measure performance in regional seismic risk assessment of reinforced concrete bridge inventories. Structure and Infrastructure Engineering, 19(6), 760–778. https://doi.org/10.1080/15732479.2021.1979599 [PDF][Link]
  30. Abarca, A., Monteiro, R., & O’Reilly, G. J. (2022). Simplified methodology for indirect loss–based prioritization in roadway bridge network risk assessment. International Journal of Disaster Risk Reduction, 74, 102948. https://doi.org/10.1016/j.ijdrr.2022.102948 [PDF][Link]
  31. Clemett N, Carofilis Gallo WW, O’Reilly GJ, Gabbianelli G, Monteiro R. Optimal seismic retrofitting of existing buildings considering environmental impact. Engineering Structures 2022; 250: 113391. DOI: 10.1016/j.engstruct.2021.113391. [PDF][Link]
  32. Perrone G, Cardone D, O’Reilly GJ, Sullivan TJ. Developing a Direct Approach for Estimating Expected Annual Losses of Italian Buildings. Journal of Earthquake Engineering 2022; 26(1): 1–32. DOI: 10.1080/13632469.2019.1657988. [PDF][Link]
  33. Zuccolo E, O’Reilly GJ, Poggi V, Monteiro R. haselREC: an automated open-source ground motion record selection and scaling tool. Bulletin of Earthquake Engineering 2021; 19(14): 5747–5767. DOI: 10.1007/s10518-021-01214-w. [PDF][Link]
  34. Calvi GM, O’Reilly GJ, Andreotti G. Towards a practical loss–based design approach and procedure. Earthquake Engineering & Structural Dynamics 2021; 50(14): 3741–3753. DOI: 10.1002/eqe.3530. [PDF][Link]
  35. O’Reilly GJ, Calvi GM. A seismic risk classification framework for non-structural elements. Bulletin of Earthquake Engineering 2021; 19(13): 5471–5494. DOI: 10.1007/s10518-021-01177-y. [PDF][Link]
  36. Shahnazaryan D, O’Reilly GJ, Monteiro R. Story loss functions for seismic design and assessment: Development of tools and application. Earthquake Spectra 2021; 37(4): 2813–2839. DOI: 10.1177/87552930211023523. [PDF][Link]
  37. O’Reilly GJ. Seismic intensity measures for risk assessment of bridges. Bulletin of Earthquake Engineering 2021; 19(9): 3671–3699. DOI: 10.1007/s10518-021-01114-z. [PDF][Link]
  38. O’Reilly GJ. Limitations of Sa(T1) as an intensity measure when assessing non-ductile infilled RC frame structures. Bulletin of Earthquake Engineering 2021; 19(6): 2389–2417. DOI: 10.1007/s10518-021-01071-7. [PDF][Link]
  39. Sullivan TJ, Saborio-Romano D, O’Reilly GJ, Welch DP, Landi L. Simplified Pushover Analysis of Moment Resisting Frame Structures. Journal of Earthquake Engineering 2021; 25(4): 621–648. DOI: 10.1080/13632469.2018.1528911. [PDF][Link]
  40. O’Reilly GJ, Goggins J. Experimental Testing of a Self-Centring Concentrically Braced Steel Frame. Engineering Structures 2021. DOI: 10.1016/j.engstruct.2020.111521. [PDF][Link]
  41. Shahnazaryan D, O’Reilly GJ. Integrating expected loss and collapse risk in performance-based seismic design of structures. Bulletin of Earthquake Engineering 2021; 19(2): 987–1025. DOI: 10.1007/s10518-020-01003-x. [PDF][Link]
  42. Carofilis W, Perrone D, O’Reilly GJ, Monteiro R, Filiatrault A. Seismic retrofit of existing school buildings in Italy: Performance evaluation and loss estimation. Engineering Structures 2020; 225: 111243. DOI: 10.1016/j.engstruct.2020.111243. [PDF][Link]
  43. O’Reilly GJ, Monteiro R, Nafeh AMB, Sullivan TJ, Calvi GM. Displacement-Based Framework for Simplified Seismic Loss Assessment. Journal of Earthquake Engineering 2020; 24(sup1): 1–22. DOI: 10.1080/13632469.2020.1730272. [PDF][Link]
  44. Nafeh AMB, O’Reilly GJ, Monteiro R. Simplified seismic assessment of infilled RC frame structures. Bulletin of Earthquake Engineering 2020; 18(4): 1579–1611. DOI: 10.1007/s10518-019-00758-2. [PDF][Link]
  45. Perrone D, O’Reilly GJ, Monteiro R, Filiatrault A. Assessing seismic risk in typical Italian school buildings: From in-situ survey to loss estimation. International Journal of Disaster Risk Reduction 2020; 44: 101448. DOI: 10.1016/j.ijdrr.2019.101448. [PDF][Link]
  46. O’Reilly GJ, Calvi GM. Quantifying seismic risk in structures via simplified demand–intensity models. Bulletin of Earthquake Engineering 2020; 18(5): 2003–2022. DOI: 10.1007/s10518-019-00776-0. [PDF][Link]
  47. O’Reilly GJ, Sullivan TJ. Modeling Techniques for the Seismic Assessment of the Existing Italian RC Frame Structures. Journal of Earthquake Engineering 2019; 23(8): 1262–1296. DOI: 10.1080/13632469.2017.1360224. [PDF][Link]
  48. O’Reilly GJ, Calvi, GM. Conceptual design in performance-based earthquake engineering. Earthquake Engineering and Structural Dynamics 2019; 48(4): 389–411. DOI: 10.1002/eqe.3141. [PDF][Link]
  49. O’Reilly GJ, Monteiro, R. Probabilistic models for structures with bilinear demand-intensity relationships. Earthquake Engineering and Structural Dynamics 2019; 48 (2): 253-268. DOI: 10.1002/eqe.3135. [PDF][Link]
  50. O’Reilly, GJ, Perrone D, Fox MJ, Monteiro R, Filiatrault A, Lanese I, Pavese A. System identification and seismic assessment modelling implications for Italian school buildings. ASCE Journal of Performance of Constructed Facilities 2019; 33 (1). DOI: 10.1061/(ASCE)CF.1943-5509.0001237. [PDF][Link]
  51. Calvi GM, Moratti MM, O’Reilly, GJ, Scattarreggia, N, Monteiro, R, Malomo, D, Calvi, PM, Pinho, R. Once Upon a Time in Italy: The Tale of the Morandi Bridge. Structural Engineering International, 2019; 28: 198-217. DOI:10.1080/10168664.2018.1558033. [PDF][Link]
  52. O’Reilly GJ, Perrone D, Fox M, Monteiro R, Filiatrault A. Seismic assessment and loss estimation of existing school buildings in Italy. Engineering Structures 2018; 168: 142–162. DOI: 10.1016/j.engstruct.2018.04.056. [PDF][Link]
  53. O’Reilly GJ, Sullivan TJ. Probabilistic seismic assessment and retrofit considerations for Italian RC frame buildings. Bulletin of Earthquake Engineering 2018; 16(3): 1447–1485. DOI: 10.1007/s10518-017-0257-9. [PDF][Link]
  54. O’Reilly GJ, Sullivan TJ. Quantification of modelling uncertainty in existing Italian RC frames. Earthquake Engineering & Structural Dynamics 2018; 47(4): 1054–1074. DOI: 10.1002/eqe.3005. [PDF][Link]
  55. O’Reilly GJ, Sullivan TJ. Fragility function for eccentrically braced frame structures. Earthquakes and Structures 2016; 10(2): 367–388. DOI: 10.12989/eas.2016.10.2.367. [PDF][Link]
  56. O’Reilly GJ, Sullivan TJ. Direct displacement-based seismic design of eccentrically braced steel frames. Journal of Earthquake Engineering 2016; 20(2): 243–278. DOI: 10.1080/13632469.2015.1061465. [PDF][Link]

Reports and Book Chapters

  1. Abarca, A., Monteiro, R. and O’Reilly, G. (2024) ‘Towards Quantitative Prioritization Schemes for Bridge Portfolios in Italy’, Available at: https://doi.org/10.1007/978-3-031-43102-9_28.[PDF]
  2. O’Reilly G, Monteiro R, Perrone D, Lanese I, Fox M, Pavese A, et al. System Identification and Structural Modelling of Italian School Buildings. In: Caicedo J, Pakzad S, editors. Dynamics of Civil Structures, Volume 2, Conference Proceedings of the Society for Experimental Mechanics Series, Springer International Publishing; 2017. DOI: 10.1007/978-3-319-54777-0_37. [PDF]
  3. Broderick BM, Goggins J, Beg D, Elghazouli AY, Mongabure P, Le Maoult A, Hunt A, Salawdeh S, Moze P, O’Reilly G, Sinur F. Assessment of the Seismic Response of Concentrically-Braced Steel Frames. In: Taucer F, Apostolska R, editors. Experimental Research in Earthquake Engineering, Geotechnical, Geological and Earthquake Engineering. 35th ed., Patras, Greece: 2015. DOI: 10.1007/978-3-319-10136-1_20. [PDF]
  4. Sullivan TJ, O’Reilly GJ, editors. Characterising the Seismic Behaviour of Steel Beam-Column Joints for Seismic Design. Research Report EUCENTRE 2014/01, Pavia, Italy: IUSS Press; 2014. [PDF]

Disclaimer: These publications are provided for timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by the authors or copyright holders. All persons using these documents are expected to adhere to the terms invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.