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Abstract
Seismic assessment of structures is often performed using their force–
displacement capacity or pushover curve computed via non-linear static analy-
sis. However, these analyses’ reliability depends on the numerical model’s detail
and its ability to capture salient failuremechanisms. Simplified analysismethods
offer effective means of identifying structural deficiencies and provide analysts
with a sound understanding of key structural characteristics, such as the strength
hierarchy, status of the structural damage in terms of limit state exceedance or
the progression of the inelastic mechanism, in addition to providing a method
with which to check numerical analysis results. This work builds upon the exist-
ing literature for simplified analysis of moment frame structures and describes a
simplified pushover-based analysis procedure for infilled frame structures. Indi-
vidual storey responses are obtained by combining the flexural resistance of the
frame and accounting for the axial resistance of the infill (modelled as an equiva-
lent axial strut) and the boundary frame members, assuming both systems work
in parallel. Then, the displaced shape of the structure is iteratively calculated for
a given base shear, which can be repeated until a pushover curve is obtainedwith
relative ease. The proposed procedure is tested and evaluated versus other avail-
ablemethods by analysing several infilled reinforced concrete frames. It is shown
that the method can perform simplified pushover analysis with a high degree of
fidelity while improving over the other similar methods currently available.
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1 INTRODUCTION

With recent developments in structural analysis and assessment, non-linear static analysis (NLSA)methods have received
increased attention. Among many NLSA methods, static pushover analysis (SPO) is seen as a fast yet robust way of per-
forming seismic analysis1,2 and is often preferred by engineers as a preliminary step towards more complex investigation,
if not chosen as the primary approach. If handled carefully, a straightforward force–displacement curve of a structure,
computed through SPO, is a handy tool for the seismic evaluation of existing buildings. Such capacity curves are often
used as standard inputs to non-linear static procedures (NSPs), such as the displacement coefficient method,3 capacity
spectrummethod1 or N2method,2 to name a few. For example, the latter two have been adopted byATC-404 and Eurocode
8.5 Furthermore, with the development of simplified tools such as SPO2IDA,6 recently extended by Nafeh et al.7 to infilled
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reinforced concrete (RC) frames, SPO has been integrated into more advanced approaches like the Pacific Earthquake
Engineering Research (PEER) Center’s framework.8
Given the evermore prevalence of irregular structures in earthquake-prone regions, structural engineers may employ

detailed analysis techniques such as non-linear response history analysis (NLRHA), often applied multiple times with
several ground motions to cover a wide range of possible scenarios. NLRHA may be considered more attractive than
pushover analysis, yet, setting up a sufficiently detailed NLRHA model may be considered a strenuous process due to
many crucial decisions, steps required, and variables to control, such as defining suitable modelling methods, element
formulations, damping models, material and geometric non-linearities, integration methods, achieving convergence and
selecting suitable groundmotion records.Hence,modellers often prefer to startwith a simple approach, such as a pushover
analysis, inwhich the number of variables to control is relatively reasonable, and build complexity as it becomes necessary.
Currently, a pushover analysis can be done rapidly with various computer programs, such as OpenSees,9 SeismoStruct,10
Ruaumoko,11 or SAP2000.12 However, like in NLRHA, the reliability of these analyses’ results is still determined by the
detail and the capability of the model to capture the ‘true’ behaviour of the modelled structure, which may not always be
immediately apparent.
Recently, simplified analysis methods have found their place as simple, yet mechanics-based approaches and have

been prominently prescribed by most modern building codes worldwide. The main advantage of these simplified meth-
ods is that they offer the analyst a good understanding of the structural behaviour by providing direct access to mod-
elling parameters throughout the analysis. Hence, by tracking the progress at each analysis step, the analyst can estab-
lish a sound understanding of key aspects of the analysed structure, such as the strength hierarchy, status of local limit
states and the progression of the global failure mechanism. In line with the ideology above, an efficient, simplified
pushover analysis procedure for bare frame structures was recently introduced and validated by Sullivan et al.13 The
present study builds upon such a methodology, extending it to the analysis of masonry-infilled frames, accounting for
their impact in terms of increased frame lateral strength and stiffness due to the strut action introduced by the infill
panels.

2 EVOLUTION OF SIMPLIFIED NON-LINEAR STATIC ANALYSIS

Addressing the need for a structure-specific simplified assessment procedure, Priestley and Calvi14 introduced a two-step
assessment method, later called the force-based method. The structural response is obtained by applying capacity-design
principles in reverse and evaluating several capacity indices. Among various novelties proposed by these authors, the sway
potential index, Sp, given in Equation (1), was one of the most notable.

𝑆𝑝 =

∑
𝑗 (𝑀𝑏𝑙 + 𝑀𝑏𝑟)∑
𝑗 (𝑀𝑐𝑎 +𝑀𝑐𝑏)

(1)

In Equation (1),Mbl andMbr are the expected flexural strengths of the right and left beams connecting to a joint at a given
storey, respectively, andMca andMcb are the expected flexural strengths of the above and below columns. Depending on
the value of Sp, it is possible to identify a collapse mechanism, that is, a column- or a beam-sway mechanism, assuming
that a flexure mechanism will govern. Specifically, an Sp lower than 0.85 indicates a beam-sway mechanism, while a
column-sway type of failure is associated with a value higher than 1.0.
While emphasising the shortcomings of the so-called force-based methods, Priestley15 proposed a displacement-based

approach for assessing structures, which was later revisited by Priestley et al.16 This procedure’s main objective is either to
do a pass/fail check of code-compliance or to compute the annual probability of exceedance of one or several limit states
using substitute-structure principles introduced by Shibata and Sözen.17 To do so, unlike the previous approaches, the
force–displacement response of the structure is computed using a simplified method that considers different equations
for empirical displaced shape, yield curvature and yield drift.
Similarly, the ATC-404 proposed a step-by-step, simplified capacity analysis method to compute the pushover curve.

The analysis is done applying a first mode based lateral force vector to the structure, solving for the response, updat-
ing the state of each member, and repeating the process for an increased lateral force vector. The non-linear response
of the members is modelled by assigning a very low or zero stiffness value once the member fails. Furthermore, an
exception is defined for progressively degrading structures, which could be applied to infilled frames. To capture the



AKAN et al. 3

softening branch of the pushover curve, multiple pushover analyses are carried out in which the analysis is stopped
at the peak response, the failed elements removed, and then a subsequent pushover analysis is done until the new
peak response. By repeating and joining each peak point, a saw-tooth-like approximation of the degradation response
is obtained. However, prior assumptions on the global failure mechanism of the structure and its progression are
required.
Even though the aforementioned studies acknowledge the significant effect of masonry infills on the structural

response, they do not consider it explicitly. The contribution of the infill panels is either neglected, assuming that they
do not interfere with the overall performance or is taken into account as stiffening elements (struts), assuming that the
global behaviour stays reasonably unchanged in the elastic range. As shown later in this paper and recognised in numer-
ous experimental test campaigns18–24 and analytical studies,24–29 these simplifying assumptionsmade in the past regarding
the impact of infill panels do not hold in the majority of cases.
Years later, two coordinated attempts to fill this gap were proposed by Landi et al.30 and Saborío-Romano31 to consider

the effects of the masonry infill panels on the displaced shape of a frame structure. Landi et al.30 suggested obtaining
the infilled frame displaced shape by simply scaling those given by Priestley et al.16 On the other hand, Saborío-Romano31
proposed a differentmethod, in which the drift attained by the infill panels existing at each storey is rendered as additional
rotational work done by the infill panel, which is then represented in terms of additional storey moments, hence, causing
an increased overall storey stiffness.
Shortly after, another scheme was proposed by Cardone and Flora32 to incorporate record-to-record variability in the

assessment procedure. Similarly, to Priestley et al.,16 after identifying a likely collapse mechanism, the sway profile of the
bare frame is estimated through displaced shape formulas and then scaled based on the anticipated estimate of increased
equivalent damping provided by the infills. The effect of stairs is also included by scaling the profile again with empirical
reduction factors. These coefficients are iteratively computed by reading off the sub-structure demand from the displace-
ment response spectrum, computing the corresponding equivalent viscous damping value, updating the displaced shape,
and repeating until convergence.
Later, the simplified analysis procedure by Priestley et al.16 was revisited by Sullivan et al.13 in an attempt to loosen

initial assumptions regarding the displaced shape, given that the existing library of empirical relationships was seen not
to be suitable when considering non-ductile frames with masonry infill panels. The authors proposed a storey stiffness-
based iterative method to estimate the displaced shape of the structure for a given base shear, inspired by numerical root-
searching algorithms. Hence, the displacements are obtained using the stiffness of each storey instead of using empirical
approximations. Notably, however, this approach did not consider the impact of masonry infill panels on the structural
response.
More recently, Gentile et al.33 presented the simple lateral mechanism analysis (SLaMA) for the simplified analysis of

infilled RC frame structures. In SLaMA, the infill and the frame responses are assumed to be decoupled. The likely failure
mechanism is identified for the frame counterpart by conducting strength hierarchy checks at each joint. Based on the
outcome, the bare frame response is evaluated either by employing empirical displaced shape functions or step-by-step
analysis. In parallel, the infill response, modelled as struts, is computed by considering their axial force capacity. Finally,
the two separate curves are aggregated to obtain the combined global response of the structure. Among other minor
assumptions that will be described later, a principal limitation of this approach is the neglection of the strut flexibility
contribution to the lateral displacement of the infilled frame system.
This paper describes a mechanics-based methodology that accurately estimates the infilled storey stiffness and over-

comes the limitations observed by Gentile et al.33 in SLaMA. Then, it presents a simplified analysis procedure that extends
the approach of Sullivan et al.13 to sufficiently capture the non-linear behaviour of an infilled frame system without com-
promising the ease of implementation.

3 PROPOSED SIMPLIFIED NON-LINEAR STATIC ANALYSIS PROCEDURE

3.1 Overview

When calculating the force–displacement curve of a bare frame structure, the idealised output is typically a bilinear curve
consisting of an initial elastic part followed by a post-yielding inelastic branch.2,5,13 Such an idealised behaviour would
be an oversimplification for an infilled structure since the overall response is non-linear due to frame-infill interaction,
starting well before the global collapse mechanism appears. The reason behind this non-linearity is the altering global
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F IGURE 1 (A) Infilled frame structure, (B) Single strut model representation, (C) MDOF idealised structure representation of the strut
model with the estimated storey system stiffnesses, Ksystem,I, (D) Final SDOF sub-structure with an applied horizontal force and a resulting
displacement

F IGURE 2 (A) Two springs connected in parallel to a mass, (B) Superposition of the flexural and the axial stiffness of the system, with
the latter comprised of a single diagonal truss and a leading boundary column element

stiffness of the structure as the infill panels begin to damage under relatively low drift ratios (∼0.01 rads)19,22,27 compared
to framemembers, causingmultiple stiffness branches to appear, which have been characterised in further detail by Nafeh
et al.,7 for example. Consequently, a fixed displaced shape functionmay not be suitable for capturing the deformation state
as damage progresses through the various stiffness branches but would require an iteratively computed profile, such as
the one proposed by Sullivan et al.13 for bare frame structures. As such, the work by Sullivan et al.13 is taken as a starting
point for the procedure proposed in this paper. For simplicity and within an initial formulation of the method, the shear-
flexure interaction between the frame members and the effects of shear or joint failure in the boundary beam-column
elements are not considered, and only the flexural response of the frame members is investigated. However, the shear
capacity of the columns may be computed and checked with empirical capacity models, such as the model by Priestley
et al.,34 whereas the joints may be checked following similar capacity models,35–38 as part of a post-process to check that
shear failure is indeed not an issue. Moreover, only the in-plane contribution of the infill panels, without openings, to the
structural response is considered. These aspects may be addressed by using recently published works, including.39–41
As a first step, themechanical and geometrical properties of the infilled frame are defined. Infill characteristics are com-

puted using a suitable andwidely used backbonemodel from the literature19,42–45 following the single equivalent diagonal
strut modelling approach.28,46,47 The infill horizontal force-drift response is computed for each storey by aggregating all
the strut members at that storey. In parallel, the backbone of each frame member is estimated via a moment-curvature
analysis. Similarly, for each storey, the lateral frame response is computed by summing the flexural capacity of the frame
members. Then, both structural responses are combined to obtain the storey system response of the infilled frame, as
shown in Figure 1C, deriving an equivalent multi-degree of freedom (MDOF) stick structure. Next, the MDOF idealised
structure is analysed for a given base shear value, and a displaced shape is calculated. Finally, with the acquired displaced
shape, theMDOF idealised structure is further reduced to an equivalent single degree of freedom (SDOF) substitute struc-
ture (Figure 2D), which assumes a first mode dominant response, to plot the base shear versus displacement.
For the analysis, the displacement profile of the idealised structure is computed iteratively, as in Sullivan et al.13 The first

mode based lateral force vector is computed by assuming an initial guess displaced shape. Then, the response of the ide-
alised structure is evaluated through storey response functions for a target base shear or a roof displacement. The process
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is repeated until convergence is achieved. This procedure resembles the first mode-based derivative of the displacement-
based adaptive pushover algorithm with an incremental update procedure.48

3.2 Assessing the lateral resistance of each storey

Estimating the horizontal force-deformation capacity or stiffness of a simple one-bay-one-storey bare frame structure is a
routine procedure. Typically, the lateral stiffness of a frame is associated only with the flexural deformation of the frame
members, assuming that all the members are axially rigid. While this is a helpful simplification for bare frames, given that
the contribution of axial stiffness in the induced horizontal displacement of the frame is minimal, the same simplification
cannot be made when masonry infills are present. Infilled frame behaviour is highly dependent on the axial stiffness of
the different members of the system, especially in low drift ranges and the flexural stiffness due to the imposed axial
deformation introduced by the compression strut formed in the infill panel, as will be shown later.
Crisafulli24 pointed out that a one-storey-one-bay infilled frame behaves reasonably analogous to a truss system where

the load-bearing mechanism is formed through the triangular geometry created by the leading boundary column in ten-
sion, the diagonal compression zone of the infill and the infinitely rigid ground. Furthermore, the same truss analogy was
shown to be valid also for multi-bay and multi-storey infilled RC structures.24,49 A widespread application of this is the
equivalent strut analogy for the numerical modelling of infills, discussed by Crisafulli et al.,28 amongst others. Using a
strut-type macro-model is a practical way of incorporating the stiffness introduced in the frame system by the infill panel
through the definition of an equivalent truss element with an axial stiffness and backbone behaviour. In line with this
approach, the present study assumes that the horizontal stiffness of an infilled frame is equivalent to a corresponding
composite truss-frame structure.
Accordingly, the frame and infill counterparts can be separated into two parallel systems. In this case, the lateral stiff-

ness can be calculated by breaking it down into two sub-structures: a frame (flexural stiffness) and a truss (axial stiffness)
system, calculating their stiffnesses and then superposing them with the assumption of two springs connected in paral-
lel to a mass, as illustrated in Figure 2A. The truss system comprises a leading boundary column and a diagonal strut
representing the infill panel. As for the parallel spring assumption, the conditions in Equations (2) to (4) are imposed.

Δ𝑠𝑦𝑠𝑡𝑒𝑚 = Δ𝑓𝑟𝑎𝑚𝑒 = Δ𝑖𝑛𝑓𝑖𝑙𝑙 (2)

𝐹𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐹𝑓𝑟𝑎𝑚𝑒 + 𝐹𝑖𝑛𝑓𝑖𝑙𝑙 (3)

𝐾𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐾𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 + 𝐾𝑎𝑥𝑖𝑎𝑙 (4)

where Δsystem, Δframe and Δinfill correspond to the lateral displacements, Fsystem, Fframe, and Finfill are the applied exter-
nal horizontal forces and Ksystem, Kflexural, and Kaxial indicate the horizontal stiffnesses. In the elastic range, for a given
Fsystem = Ksystem•Δsystem condition, Equations (2) to (4) have two unknowns (i.e., Kflexural and Kaxial) which are computed
through simplified analysis. An external force, Fsystem, is applied, and Δsystem is computed. Finally, Fframe and Finfill are
calculated by invoking Hooke’s law. The extension proposed in this work is achieved by estimating Kaxial introduced by
the infills while relying on Sullivan et al.13 to calculate Kflexural associated with the frame flexural behaviour, considering
the complete response of an infilled frame.

3.2.1 Infill truss system behaviour

The contribution of the infill truss system to the storey lateral stiffness is calculated by first characterising the section-
level response, then passing it to the member and storey behaviours consecutively. The output of this approach is a set
of individual storey-by-storey infill force–displacement response curves, 𝐹𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖) = 𝛽𝑖 (𝜃𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)), where i denotes storey
number and 𝛽𝑖 is the storey infill response function.
Themethodology described in this work is limited to single equivalent diagonal strutmodels. Future researchworkmay

include othermodelling strategies, such as double or triple struts, which enable the investigation of themembers’ potential
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F IGURE 3 A Quadrilinear infill storey response curve, 𝛽𝑖

shear-related response and failure effects. Nevertheless, choosing the most suitable strut modelling methodology for the
problem is up to the analyst. Some suggested single strut models include: Bertoldi et al.,42 Panagiotakos and Fardis,44
FEMA 3563, Decanini et al.,43 Crisafulli et al.,50 ASCE/SEI 51 or Sassun et al.19 Note that, while choosing a model, the
model’s capability to predict different masonry failure modes is critical. Bose et al.52 and the references therein discuss the
drawbacks of the traditional strut analogy in modelling masonry infills and propose an improved strut model calibrated
with experimental or detailed numerical analysis results. Once a suitable modelling approach has been identified, the
procedure described next is used to estimate the capacity points and the corresponding stiffness of the infill members.
The section backbone response (strength, stiffness and drift capacity) is obtained for each infill panel using the chosen

modelling approach to set up the infill truss system’s behaviour. At this point, it is crucial to define the coordinate system
utilised for general calculations and the piece-wise linear damage state function that represents the response of an infill
panel in a simplified manner.
First, the local member stiffness is denoted by lowercase k. In contrast, the horizontal component of the global stiffness

is denoted by uppercase K. Accordingly, the member stiffnesses are computed in the member’s native coordinate system.
Meaning the local basis coincides with the natural basis of the member. In contrast, the global stiffnesses are computed
in the global coordinate system. Second, the infill’s damage state (DS) is defined as a function of axial strut strain, or
storey drift, using Equation (5) to keep track of the strut’s response state during the analysis. The relationship between
the accumulated drift and the damage state for infills has been investigated by various authors, including.19,27 Finally,
the limit strain values that defines the interface between consequent DSs are collected in a second function, described by
Equation (6), termed the limits function (LF) for ease of representation.

𝐷𝑆𝑖𝑛𝑓𝑖𝑙𝑙 (𝜃) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑𝑎𝑚𝑎𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 0,
|||𝜃0𝑖𝑛𝑓𝑖𝑙𝑙 ≤ 𝜃 < 𝜃1

𝑖𝑛𝑓𝑖𝑙𝑙

𝑑𝑎𝑚𝑎𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠,
|||𝜃𝑠𝑖𝑛𝑓𝑖𝑙𝑙 ≤ 𝜃 < 𝜃𝑠+1

𝑖𝑛𝑓𝑖𝑙𝑙

𝑑𝑎𝑚𝑎𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠 + 1,
|||𝜃𝑠+1𝑖𝑛𝑓𝑖𝑙𝑙

≤ 𝜃 < 𝜃𝑠+2
𝑖𝑛𝑓𝑖𝑙𝑙

𝑑𝑎𝑚𝑎𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 𝑁𝐷𝑆,
|||𝜃𝑁𝐷𝑆

𝑖𝑛𝑓𝑖𝑙𝑙
≤ 𝜃 < 𝜃

𝑁𝐷𝑆+1

𝑖𝑛𝑓𝑖𝑙𝑙

(5)

𝐿𝐹𝑖𝑛𝑓𝑖𝑙𝑙 (𝑠) = {𝜃𝑠
𝑖𝑛𝑓𝑖𝑙𝑙

, 0 ≤ 𝑠 ≤ (𝑁𝐷𝑆 + 1 ) 𝑤ℎ𝑒𝑟𝑒 𝑠 = 0, 1, … , (𝑁𝐷𝑆 + 1) (6)

where 𝜃 is the storey drift, 𝜃0
inf ill

is the storey drift corresponding to initial infill conditions, 𝜃𝑠
inf ill

is the consecutive infill
drift limit, and 𝑁𝐷𝑆 is the number of damage states. The LF defines a drift limit which, when exceeded, induces a DS.
Therefore, aDS represents a zone of damage between a defined set ofNDS number LF limits. The need for such a distinction
will become apparent later, but a reference system that is general enough to be used based on storey drift or strut strain and
also the current state of the infill panel concerning these limits were deemed necessary. To illustrate this, Figure 3 shows
a four-limit-valued storey infill response curve obtained by adapting the strut model defined by Sassun et al.19 into the
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F IGURE 4 Proposed procedure to estimate the storey
stiffness by aggregating the consecutive bays and considering
the axial shortening and elongation of the lower storeys

described reference system. The shown process can be applied to any suitable strut backbone conforming to the properties
defined earlier in this section.
As the first step, for infill at a given storey, the piece-wise linear strut axial force–displacement response is computed

using the tangent strut stiffness 𝑘𝑠𝑠𝑡𝑟𝑢𝑡. With the axial stiffness of the infill strut known for any DS, the axial stiffness of
the boundary column shown in Figure 2B is computed. For a typical applied lateral load, the boundary column will be
in tension. However, when gravity loading is present on the column, the resultant behaviour is expected to be initially
compressive, followed by some unloading due to the addition of the tensile seismic load. Assuming that the axial column
response remains in the elastic range, the boundary column cracked or uncracked axial stiffness in tension can be cal-
culated using the well known axial stiffness formula. Using the initial stiffness is a reasonable approximation only for a
limited initial range where the tensile response is approximately linear.53 For a simplified analysis, the axial behaviour
may be assumed to be in this range, hence using uncracked stiffness throughout, whether under compression or tension,
ignoring effects like yielding or tension stiffening. However, the axial degradation of the columns can also be taken into
account using additional damage states in case it is of interest.
The next step is to calculate the storey infill stiffnesses. Following the flexural and axial stiffness decomposition, as in

Figure 2, the equivalent truss structure representing the axial stiffness of the infilled frame can be treated with any well
known structural analysis procedure. The method of virtual work was chosen for this study since it allows the analyst
to write member actions in terms of external forces and structural geometry. The interested reader is referred to Akan54
for a detailed derivation of the analytical expressions summarised in this section. As illustrated in Figure 4, storey infill
stiffness is obtained by first calculating the stiffness of a single bay and then summing bay contributions, assuming they
are connected in parallel. This simple addition of bays relies on the assumption of axially rigid beams and beams having
little or no contribution to the axial stiffness, which past work by Stafford-Smith49 noted to be a reasonable assumption for
infilled frames. Considering the flow of forces through upper to lower storeys, which is a function of the number of bays,
geometry of bays and the strut stiffnesses at the below storey, the aforementioned approach is a simplified representation.
However, as shown in the case studies presented later in this work, this process yields estimates comparable with those
of the numerical analyses.
The bay horizontal axial stiffness is estimated via virtual work by computing the displacement at the top of a single

storey due to an applied unitary horizontal force, and then taking the inverse (unit force divided by the displacement, δ).
For a single bay ground storey structure (Figure 4B), the bay infill stiffness calculation is given by Equations (7) and (8):

𝛿𝑠
1𝑗
=

𝑡𝑎𝑛2𝜆1𝑗

𝑘𝑠
𝑐𝑜𝑙𝑢𝑚𝑛,(1𝑗)

+
1(

𝑐𝑜𝑠2𝜆1𝑗
) (

𝑘𝑠
𝑠𝑡𝑟𝑢𝑡,(1𝑗)

) (7)

𝐾𝑠
𝑎𝑥𝑖𝑎𝑙,(1𝑗)

=
1

𝛿𝑠
1𝑗

(8)
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where for the first storey, j-th bay, 𝛿𝑠
1𝑗
is the expected displacement, λ1j is the infill strut angle and 𝑘𝑠

𝑐𝑜𝑙𝑢𝑚𝑛,(1𝑗)
and 𝑘𝑠

𝑠𝑡𝑟𝑢𝑡,(1𝑗)

are the tangent axial stiffness of the leading boundary column and the infill strut at DS s. Equation (7) is composed of a
column term and a strut term: the column term handles the elongation due to the tensile force in the boundary column,
whereas the strut term is related to the shortening of the infill strut. The horizontal component of the bay axial stiffness,
𝐾𝑠
𝑎𝑥𝑖𝑎𝑙,(1,𝑗)

, is recomputed at each DS to define the successive branches of the storey backbone.
For multi-storey structures, the axial stiffness of a storey is computed considering the contribution of the storeys below.

Since the overturning moment due to the lateral force at a storey is balanced by the moment couple produced by the
tension and the compression columns of the storeys below, similar to the rigid storey rotation contribution observed in
eccentrically braced frames,55 for example, the resulting additional displacement should be added to calculate the total
displacement at a storey. An upper storey is thus expected to be softer than the bottom storey in terms of lateral axial
stiffness. The effect of including column axial stiffness becomes significant as the number of storeys increases. This added
flexibility of an upper storey becomes apparent in the structure’s overall response, especially if a soft storey is expected at
higher levels. The effect of axial stiffness of columns is discussed later in the paper via a case study.
The displacement of a bay is computed again using the virtual work principle, and it results in the expressions given in

Equations (9) and (10). The top displacement at the i-th storey due to a unit force is computed, including storeys below,
as per Equation (9):

𝛿𝑠
𝑖𝑗
=

1(
𝑐𝑜𝑠2𝜆𝑖𝑗

) (
𝑘𝑠
𝑠𝑡𝑟𝑢𝑡,(𝑖𝑗)

) +

𝑖∑
𝑎 = 1

𝑡𝑎𝑛2𝜆𝑎𝑗

𝑘𝑠
𝑐𝑜𝑙𝑢𝑚𝑛,(𝑎𝑗)

+

𝑖−1∑
𝑎 = 1

𝑡𝑎𝑛2𝜆𝑎𝑗

𝑘𝑠
𝑐𝑜𝑙𝑢𝑚𝑛,(𝑎(𝑗+1))

(9)

𝐾𝑠
𝑎𝑥𝑖𝑎𝑙,(𝑖,𝑗)

=
1

𝛿𝑠
𝑖𝑗

(10)

where for the i-th storey, j-th bay and s-th damage state. 𝛿𝑠
𝑖𝑗
is the expected displacement due to a unit force, and λij is the

strut angle. As before, the horizontal component of the bay axial stiffness, 𝐾𝑠
𝑎𝑥𝑖𝑎𝑙,(𝑖,𝑗)

, can be adjusted by updating (index
s) the initial column and infill stiffnesses to obtain the successive branches of the storey backbone.
For multi-storey, multi-bay frames, such as that shown in Figure 4, the total stiffness of the frame can be obtained from

Equation (9) by simply adding the individual stiffnesses of the bays, assuming that the top node displacement of each bay
is the same. This assumption implies that bays work in parallel to accommodate the applied external loading, giving the
generalised solution for the Nbay number of bays shown in Equation (11).

𝐾𝑠
𝑎𝑥𝑖𝑎𝑙,(𝑖)

=

𝑁𝑏𝑎𝑦∑
𝑗=1

(
𝐾𝑠
𝑎𝑥𝑖𝑎𝑙,(𝑖𝑗)

)
=

𝑁𝑏𝑎𝑦∑
𝑗=1

(
1

𝛿𝑠
𝑖𝑗

)
(11)

Finally, the storey shear resistance due to infills is computed by summing the horizontal components of the infill strut
forces, 𝐹𝑠+1

𝑠𝑡𝑟𝑢𝑡,(𝑖)
(i.e., the force in the strut for a given level of displacement) in a storey (Equation 12).

𝐹𝑠+1
𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)

=

𝑁𝑏𝑎𝑦∑
𝑗=1

𝑓𝑠+1
𝑠𝑡𝑟𝑢𝑡,(𝑖𝑗)

𝑐𝑜𝑠𝜆𝑖𝑗 (12)

𝑓𝑠+1
𝑠𝑡𝑟𝑢𝑡,(𝑖𝑗)

and cosλij for the i-th storey and j-th bay, are the axial capacity of the strut and the strut angle. Finally, the
storey drifts corresponding to the computed forces are obtained using the determined storey shear resistance and the
initial stiffness, as per Equation (13).

𝜃𝑠+1
𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)

= 𝜃𝑠
𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)

+
F𝑠+1
𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)

− F𝑠
𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)(

𝐾𝑠
𝑎𝑥𝑖𝑎𝑙,(𝑖)

)
ℎ𝑠𝑡𝑜𝑟𝑒𝑦,(𝑖)

(13)

where 𝐹𝑠+1
𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)

and 𝜃𝑠+1
𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)

correspond to the bounding storey infill shear resistance and storey drift, respectively,
whereas 𝐾𝑠

𝑎𝑥𝑖𝑎𝑙,(𝑖)
is infill stiffness for the damage state s.
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3.2.2 Overview of the frame flexural system behaviour

According to the parallel spring assumption made in Figure 2, the approach of Sullivan et al.13 is applied to quantify the
bare frame flexural stiffness (Kflexural.) and is briefly described here for completeness. The output of this approach is a set of
storey-by-storey frame response curves, 𝐹𝑓𝑟𝑎𝑚𝑒,(𝑖) = 𝜓𝑖 (𝜃𝑓𝑟𝑎𝑚𝑒,(𝑖))where 𝜓𝑖 is the storey frame response function. Similar
to the infills, the DSs of the frame members are controlled via separate DS and LF functions. Because of this difference,
the index p is chosen to control the frame behaviour.
First, the sectionmoment-curvature (M-ϕ) relationships should be computed to define eachmember’s section backbone

capacity such as the yield, ultimate and residual moment-curvature values (𝑀𝑝+1

𝑐𝑜𝑙𝑢𝑚𝑛
, 𝜙

𝑝+1

𝑐𝑜𝑙𝑢𝑚𝑛
and 𝑀𝑝+1

𝑏𝑒𝑎𝑚
, 𝜙

𝑝+1

𝑏𝑒𝑎𝑚
). This

way, the existing procedure can also be extended to capture the post-peak response of the members. According to Sullivan
et al.,13 after the computation of the section capacities, the element force-deformation responses are obtained for every
singleM-ϕ point (starting from yield), and the element responses are condensed into the storey force-drift backbone curve.
The maximum joint moment is established, and the maximum possible demand in each member framing into that joint
is defined to satisfy the joint equilibrium conditions. With the obtained top and bottom maximum column moments, the
storey shear resistance is computed from Equation (14):

𝐹
𝑝+1

𝑓𝑟𝑎𝑚𝑒,(𝑖)
=

∑
𝑀

𝑏𝑜𝑡𝑡𝑜𝑚,(𝑝+1)

𝑐𝑜𝑙𝑢𝑚𝑛,(𝑖)
+
∑
𝑀

𝑡𝑜𝑝,(𝑝+1)

𝑐𝑜𝑙𝑢𝑚𝑛,(𝑖−1)

ℎ𝑠𝑡𝑜𝑟𝑒𝑦,(𝑖)
(14)

where 𝐹𝑝+1
𝑓𝑟𝑎𝑚𝑒,(𝑖)

is the frame storey shear resistance ∑𝑀
𝑏𝑜𝑡𝑡𝑜𝑚,(𝑝+1)

𝑐𝑜𝑙𝑢𝑚𝑛,(𝑖)
and ∑𝑀

𝑡𝑜𝑝,(𝑝+1)

𝑐𝑜𝑙𝑢𝑚𝑛,(𝑖−1)
is the sum of the top and bottom

column end moment demands immediately below the joint centrelines. The required member yield drifts are computed
through a set of expressions listed in Sullivan et al.13 for different expected mechanisms, such as beam or column-sway,
which are assessed using the sway potential index Sp described earlier.
After the critical drift of each relevant (beam or column) member is defined, the storey yield drift is computed by

applying the principle of equal external and internal work. Finally, the storey flexural stiffness is computed with Equation
(15). Readers are referred to Sullivan et al.13 for further details regarding how pre-yield and post-yield branches of response.

𝐾
𝑝

𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙,(𝑖)
=

𝐹
𝑝+1

𝑓𝑟𝑎𝑚𝑒,(𝑖)
− 𝐹

𝑝

𝑓𝑟𝑎𝑚𝑒,(𝑖)(
𝜃
𝑝+1

𝑓𝑟𝑎𝑚𝑒,(𝑖)
− 𝜃

𝑝

𝑓𝑟𝑎𝑚𝑒,(𝑖)

)
ℎ𝑠𝑡𝑜𝑟𝑒𝑦,(𝑖)

(15)

3.2.3 Assessing the likely mechanism of each storey

Though Sp sufficiently assesses the relative strength of beam and column members at a storey, due to the frame-infill
interaction, additional considerations may be required to identify the potential failure mechanism of an infilled frame. As
discussed previously, due to the high lateral stiffnesses generally introduced by the infills at a storey, the low drift portion
of the structural behaviour is dominated by the infill response. Based on the failure sequence of the infills across the
structure or the irregular distribution of infills (e.g., a pilotis frame), significant stiffness differences may occur between
two storeys, which can eventually lead to a premature soft-storey type of failure. Understanding this phenomenon is also
critical for beam-sway structures hence a method to help identify the potential of a frame-infill interaction driven soft-
storey is necessary. In Section 5.2, the altering global mechanism of a bare column-sway frame due to the introduction of
a regularly distributed infill is discussed.
Consider a beam-sway frame designed according to the weak-beam strong-column capacity design principles displayed

in Figure 5. Flexural hinges are added at the beam ends and the bottom column end to illustrate the mechanism forming
at the onset of the collapse. Note that without the infill moments (𝑀𝑖𝑛𝑓𝑖𝑙𝑙), there is no lateral resistance; thus, the struc-
ture is unstable. Case I is achieved if the strength of the infill at the top storey approaches zero and the infill’s strength
at the bottom storey remains high and vice-versa for Case II. As illustrated, the maximum moments on the columns
(𝑀𝑡𝑜𝑝

𝑐𝑜𝑙𝑢𝑚𝑛
𝑀𝑏𝑜𝑡𝑡𝑜𝑚

𝑐𝑜𝑙𝑢𝑚𝑛
) occur at the joint level and are equal to the resistance introduced by the infill moments (𝑀𝑖𝑛𝑓𝑖𝑙𝑙). Hence,

the maximum lateral load applied on the frame can be worked out as the moment that would cause flexural hinging of
the top or bottom column sections connecting to the joint.
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(A) (B) (C)

F IGURE 5 The prominent mechanisms for a beam-sway frame designed according to weak beam strong column principles

With a reverse capacity design approach, in which the failure of the columns due to shear is not an issue, if the infill is
the weakest link between the column-infill flexural system, the infill would fail before the columns, allowing the stiffer
storey to catch upwith the softer storey and eventually preserve the beam-swaymechanism.Moreover, in the case of beam-
sway structures with uniformly distributed infills (𝑀𝑖𝑛𝑓𝑖𝑙𝑙 is uniform or similar across the structure’s height), pushover
analyses show that as the infills at the first floor fail at lower drifts, the structure may transition to Case II following
the complete collapse of the infills at the first floor. However, it is important to note that the sharpness of the softening
stiffness of the failing infill is an essential factor. For a uniform infilled beam-sway frame, in which the accumulated drift
at a storey increases linearly from top storey to the bottom storey, infill failure may happen in a progressive sequence if:
(i) the columns can accommodate the internal forces that trigger cross storey infill failure or (ii) the infills at lower storeys
exhibit a ductile behaviour.
Assuming that the infills soften with an adequately sharp stiffness and the infill failure occurs at the storey before the

drift at the upper storeys catches up, a comparison of column versus infill strengths can be made to identify if a column-
sway mechanism is likely. Since a cross storey comparison of the strengths is made, an assumption on the applied lateral
force vector is required. Note that a triangular force vector would yield the critical result for Case-I-type of failure, whereas
a uniform vector is more critical for Case II. For the sake of simplicity, a uniform force vector is assumed at Equation (16).
For a multi-storey, multi-bay, beam-sway infilled frame structure, the potential of having a column-sway failure can be
assessed by evaluating the Equation (16):

Pilotis Potential Index,
𝑷𝒑

(at joint level)

𝑃𝑎𝑏𝑜𝑣𝑒
𝑝,𝑖

=

∑
𝑀𝑖𝑛𝑓𝑖𝑙𝑙,𝑖

(
ℎ𝑠𝑡𝑜𝑟𝑒𝑦,(𝑖+1)

)
(𝑁 − 𝑖)∑

𝑀𝑏𝑜𝑡𝑡𝑜𝑚
𝑐𝑜𝑙𝑢𝑚𝑛, (𝑖+1)

(∑𝑁−𝑖

𝑎 = 0
(
∑𝑁−𝑎

𝑏 = 𝑖
ℎ𝑠, 𝑏)

)
𝑃𝑏𝑒𝑙𝑜𝑤
𝑝,𝑖

=

∑
𝑀𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖+1)

(
ℎ𝑠𝑡𝑜𝑟𝑒𝑦,𝑖

)
(𝑁 + 1 − 𝑖)∑

𝑀
𝑡𝑜𝑝

𝑐𝑜𝑙𝑢𝑚𝑛, 𝑖

(∑𝑁−𝑖

𝑎 = 0
(
∑𝑁−𝑎

𝑏 = 𝑖
ℎ𝑠, 𝑏)

) > 𝟏.𝟎 (16)

where
∑
M𝑐𝑜𝑙𝑢𝑚𝑛,i denote the elastic column capacity at the i-th storey.

∑
Minif ll,i denotes the sum of the peak infill capac-

ity at the i-th storey and the infill moments at other storeys at the time of failure of the infills at the i-th storey. hstorey,i
is the storey height, and 𝑁 corresponds to the number of storeys. In the top and the bottom parts of the index equa-
tion, the numerator handles the infill-attributed resistance, whereas the denominator is related to the flexural capacity
of the columns at the critical section. The double summation term is the overturning moment (OTM) at the storey of
interest due to a unit uniform lateral force vector. The maximum storey shear observed before the flexural hinging of
the columns is found when the unit OTM is scaled with the capacity of the columns. An outcome greater than one indi-
cates a potential column-sway mechanism at the storey above or below the joint. However, being a purely numerical



AKAN et al. 11

F IGURE 6 Storey response curve 𝜻𝒊 for
the i-th storey. Note that the resultant
response is the superposition of individual
frame and infill behaviour

approach, further research is required to assess the feasibility and accuracy of using Equation (16) in the aforementioned
context.

3.2.4 Combining the truss and frame systems

The combined system stiffness merges the estimated horizontal flexural and axial stiffnesses of the frame and the truss
system counterparts as per Equation (4) for every storey. The output is, therefore, a set of force-drift curves, 𝐹𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖) =
𝜁𝑖 (𝜃𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)) for each storey, such as the one illustrated in Figure 6, where 𝜁𝑖 is the storey response function. As before,
since the DS and LF of the system are new ones (superposition of infill and frame), the index k is chosen to control storey
behaviour.
Recalling the parallel springs assumption on the superposition of the flexural and axial stiffnesses in Figure 2B, since

both infill and frame counterparts attain the same top displacement, the abscissa of function 𝜁𝑖 consists of the drift limits
of both infill (𝛽𝑖) and frame (𝜓𝑖) storey behaviour functions in sequentially ascending order, conforming to the strength
hierarchy of the storey. Similarly, in between consecutive drift points, the system storey stiffness is given by a direct sum-
mation of infill and frame stiffnesses for a given storey level, as per Equation (17). Finally, the corresponding storey shear
is computed for the fixed stiffness and drift values, as in Equation (18):

𝐾𝑘
𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)

= 𝐾
𝑝

𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙,(𝑖)
+ 𝐾𝑠

𝑎𝑥𝑖𝑎𝑙,(𝑖)
(17)

𝐹𝑘+1
𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)

= 𝐹𝑘
𝑠𝑦𝑠𝑦𝑡𝑒𝑚,(𝑖)

+ 𝐾𝑘
𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)

.
(
𝜃𝑘+1
𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)

− 𝜃𝑘
𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)

)
.ℎ𝑠𝑡𝑜𝑟𝑒𝑦,(𝑖) (18)

where𝐾𝑘+1
𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)

,𝐾𝑝+1

𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙,(𝑖)
and𝐾𝑠+1

𝑎𝑥𝑖𝑎𝑙,(𝑖)
are the system, flexural and axial stiffnesses for the i-th storey and damage state

k, while F𝑘
𝑠𝑦𝑠𝑦𝑡𝑒𝑚,(𝑖)

and 𝐹𝑘+1
𝑠𝑦𝑠𝑦𝑡𝑒𝑚,(𝑖)

are the storey shears at level i.

4 METHOD OF ANALYSIS

4.1 Summary of the proposed procedure

Following the different steps outlined in the previous section, the analysis procedure to compute the entire force–
displacement response of the structure is described here, according to the flowchart in Figure 7. By preparing the
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F IGURE 7 Flowchart of the proposed simplified analysis procedure for infilled frames

simplified structural model with sufficient accuracy, following Section 3.2, the structure is condensed into a simplified
MDOF structure, where each storey is associated with a horizontal translational degree of freedom. The equivalent struc-
ture is analysed following a set of basic steps, similar to those described in Sullivan et al.13 for bare frames, integrated with
several extensions to include frame-infill interaction and improve the pre-and post-yield stages of the structural response.
First, a target base shear is chosen, corresponding to the demand for which the displaced shape will be computed.

Next, a storey drift profile is trialled for the structure, and the displaced shape is computed. The external storey shears are
computed using Equations (21) and (22). Then, a new displaced shape is obtained applying Equations (23), (24) and (25).
For the new displaced shape, the internal (element) forces are computed (Equation 26), and the unbalanced load at each
storey is checked (Equation 27). If the convergence is not yet achieved, another iteration is made by repeating Equations
(21) to (27) using the new displaced shape. Convergence is achieved usually after three or four iterations, as also noted by
Sullivan et al.,13 At this point, a capacity point on the pushover curve of the structure is identified, as well as other local
engineering demand parameters that may be of interest.
The demand indices SDi and IDi are checked before changing the target base shear and moving on to the next point.

These indices provide information regarding the remaining capacity of the frame and infill members. If the capacity is
reached at one or more demand indices, it is necessary to alter the storey response by switching to the following damage
state’s stiffness, drift, and resistance parameters. The complete pushover curve of the structure is obtained by repeating
this process, as will be illustrated in Section 5.

4.2 Behaviour indices

Some aspects of the proposed procedure are worth discussing further. If a mechanism due to a possible shear failure in
the columns, beams and joints is excluded, the global mechanism of the structure is dictated by the flexural capacity of
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the frame members, making the sway potential index, Sp, compatible with the method discussed in this work to identify
the likely storey mechanisms. As an additional step, the potential of having a column-sway type of failure or a beam-sway
mechanismdue to the frame-infill interaction is assessed by the Pilotis Potential Index,𝑃𝑝 at each joint level (Section 3.2.3).
As the infill and the frame contributions are assumed to be parallel, the frame and infill capacities can be assessed

separately. Hence, the sway demand index, SDi, proposed by Sullivan and Calvi,56 can be used to check the capacity ratio
of the frame system. It is computed as per Equation (19):

𝑆Di =
storey 𝑖 frame shear demand
storey 𝑖 frame shear resistance

=
𝐹𝑡frame, (𝑖)

𝐹
𝑝+1

frame, (𝑖)

(19)

where index t controls the iteration step. Similarly, a check is also done for the infill truss system. The infill demand index,
IDi, presented in Equation (20), is computed to check the capacity ratio of the infill panel members of the parallel infill
truss system during the analysis.

𝐼Di =
storey 𝑖 infill shear demand
storey 𝑖 infill shear resistance

=
𝐹𝑡infill, (𝑖)

𝐹𝑠+1infill, (𝑖)

(20)

𝐹𝑡
𝑓𝑟𝑎𝑚𝑒,(𝑖)

and 𝐹𝑡
𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)

are computed using Equation (26). Sway and infill demand indices are used in parallel to follow
the current response of each frame and infill member in the structure during the simplified pushover. As these indices
reach 1.0, indicating that the capacity has been reached, the corresponding member’s properties should be updated to the
next branch of its backbone curve. Indices possess a crucial role in identifying the structure’s degradation pattern and
progressive collapse mechanism.

4.3 Convergence and iteration for the displaced shape

The displaced shape, similar to Sullivan et al.,13 is iterated over Equations (21) to (25) until a two-step convergence criterion
is satisfied. As a start, a trial drift profile is assumed for the structure and, based on the storey displacements, the target base
shear is distributed to each storey (Equation 21). Then, the storey shear profile is computed (Equation 22), and the storey
displacements are obtained by dividing the storey shear by the storey stiffness (Equations (23) and (24)). Finally, the new
displaced shape is computed (Equation 25). The first convergence criterion is achieved when the computed displacements
(Δ𝑡

𝑖
and Δ𝑡+1

𝑖
) are close to each other with an acceptable margin of error (< 1‰).

𝐹𝑡
𝑖
=

𝑚𝑖Δ
𝑡
𝑖∑

𝑚𝑖Δ
𝑡
𝑖

𝑉
𝑡𝑎𝑟𝑔𝑒𝑡

𝑏
(21)

𝑉𝑡
𝑖
=

𝑁𝑠𝑡𝑜𝑟𝑒𝑦∑
𝑗=𝑖

𝐹𝑡
𝑗

(22)

[𝑙𝑜𝑎𝑑𝑖𝑛𝑔] 𝛿𝑡𝑖 =
𝑉𝑡
𝑖
− 𝐹𝑘

𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)

𝐾𝑘+1
𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)

+ 𝜃𝑘
𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)

.ℎ𝑠𝑡𝑜𝑟𝑒𝑦 (23)

[𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔] 𝛿𝑡𝑖 =
𝑉𝑡
𝑖
− 𝐹

𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔

𝑖

𝐾
𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔

𝑠𝑦𝑠𝑡𝑒𝑚,(𝑖)

+ 𝜃
𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔

𝑖
.ℎ𝑠𝑡𝑜𝑟𝑒𝑦 (24)

Δ𝑡+1
𝑖

=

𝑁𝑠𝑡𝑜𝑟𝑒𝑦∑
𝑗=𝑖

𝛿𝑡
𝑗

(25)
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F IGURE 8 The unloading phenomenon and the localisation of deformation at the soft-storey

where indices t, i and k control the iteration step, the storey number, and the DS of the storey, respectively. Variables𝑚𝑖 ,
𝐹𝑡
𝑖
and 𝑉𝑡

𝑖
correspond to the storey mass, shear, and cumulative storey shear. If the storey is unloading, 𝐹𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔

𝑖
and

𝜃
𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔

𝑖
are the last computed storey shear and drift values for that storey before the unloading starts, as discussed in

the next section. Finally, the target base shear𝑉𝑡𝑎𝑟𝑔𝑒𝑡

𝑏
is the point to be computed on the pushover curve. Fframe,i and Finfill,i

are computed based on the computed displaced shape, Δ𝑡+1
𝑖

by passing the corresponding storey drift to the infill (𝛽𝑖) and
the frame (𝜓𝑖) storey response functions defined in Sections 3.2.1 and 3.2.2. The storey shear resistance is computed by
adding the individual contributions (Equation 26).

𝑉𝑡
𝑡𝑟𝑢𝑒,𝑖

= 𝐹𝑡
𝑓𝑟𝑎𝑚𝑒,(𝑖)

+ 𝐹𝑡
𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)

𝑤ℎ𝑒𝑟𝑒 𝐹𝑡
𝑓𝑟𝑎𝑚𝑒,(𝑖)

= 𝜓𝑖(𝜃
𝑡
𝑖
),𝐹𝑡

𝑖𝑛𝑓𝑖𝑙𝑙,(𝑖)
= 𝛽𝑖

(
𝜃𝑡
𝑖

)
, 𝑎𝑛𝑑 𝜃𝑡

𝑖
= 𝛿𝑡

𝑖
∕ℎ𝑠𝑡𝑜𝑟𝑒𝑦 (26)

Hence, the storey unbalanced load, ΔVi, can be used as a second convergence criterion (Equation 27). The unbalanced
load is computed as the difference between the storey shear (Equation 22) and the true storey shear (Equation 26). The sec-
ond condition of convergence is reached when the unbalanced load approaches zero. In a continuous analysis, the trialled
displaced shape can be taken as the displacement profile obtained from the latest committed step to achieve convergence
faster.

Δ𝑉𝑡
𝑖
= 𝑉𝑡

𝑡𝑟𝑢𝑒,𝑖
− 𝑉𝑡

𝑖
((27))

4.4 Unloading

The final aspect to consider is the localisation of the displacements at the soft-storey. As the analysis progress, infills at
one or more storeys may reach their peak capacity. According to the strut backbone, following the peak response, the
stiffness of the infill members becomes negative, indicating a progressively degrading behaviour. At the global level, the
applied horizontal load reaches a maximum and needs to be decreased from this point onwards to achieve convergence.
Hence, the degrading storeys keep deforming, while the others unload as the analysis progresses. This behaviour causes
the source of displacement increment to localise at the soft-storey.
In a simplified analysis framework, the localisation phenomenon ismodelled by updating the response of the structural

members. When the stiffness of one of the storeys becomes negative, Equation (23) is again used to compute new inter-
storey displacement values, whereas the remaining storeys proceed with the unloading sequence, switching to Equation
(24). The storey unloading stiffness is a modelling decision and can be explicitly chosen by the analyst for each problem
or as suggested by the backbone strategy. The effect of the member unloading stiffness on the global behaviour is partly
represented by the slope of the dropping portion in the pushover curve,57 as illustrated in Figure 8. By considering the
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(A)

(B)

F IGURE 9 (A) The set of 2D frame structures adopted from Galli,58 (B) illustration of the infill typologies and the uniform distribution
adopted

effect of the changing strength characteristics of each storey as the analysis progresses, a global failure mechanism is
identified without making any prior assumptions.

5 VALIDATION OF THE PROPOSED SIMPLIFIED ANALYSIS PROCEDURE

5.1 Case study structures

A set of existing infilled frames was analysed in OpenSees9 and with the proposed method (Figure 7) to compare the
resulting pushover curves. These frames were adopted from the work of Galli,58 who studied the behaviour of multiple
frames designed between the 1950s and 1970s, considering them as a sample of the gravity load designed frames in Italy
and the Mediterranean region in general. In addition, an example application of the proposed procedure to a three-storey
three-bay strong infilled RC frame with a column-sway mechanism is provided in Appendix A. These frames have also
been employed in other studies.7,13,25,26,59 For this study, twelve planar frames featuring two different heights, two different
widths and three different infill typologies were considered (Figure 9). The definition of different typologies of infills was
adapted from Hak et al.27 As modelling decisions, the frame section flexural response was modelled using the approach
proposed by O’Reilly and Sullivan38 for non-ductile RC frame structures in Italy. That study38 recommended a trilinear
backbone curve for the frame members with four performance points. Meanwhile, the infill strut axial backbone was
modelled after Sassun et al.,19 in which the backbone presented by Decanini et al.43 was calibrated with experimental
results. The chosen strut model considers compression at the centre of the panel, compression of corners, sliding shear
failure, and diagonal tension as possible masonry failure modes. The backbone curve obtained was a quadrilinear curve
and consisted of four limit state definitions. The unloading stiffnesses are assumed to be the same as initial stiffness for
the sake of simplicity.
For the simplified analysis, a moment-curvature analysis for the member cross-sections was carried out following the

strategy in38 to identify the yield strength of the members, and the infill strut backbones were evaluated. Calculations
were performed inMicrosoft Excel, corroborating the practical nature of the procedure, and the spreadsheet of each struc-
ture is available on GitHub at: https://github.com/odakan/Simplified–Pushover-Analysis-of-Infilled–Frame-Structures.
In OpenSees, beams and columns were modelled using the force-based beam with hinges element. The internal region of
the beam-column element was modelled as an elastic section. The endpoint integration method was used at the hinges in
which the curvature at the beam end was assumed to be constant over the whole plastic hinge region.60 At each extreme

https://github.com/odakan/Simplified-Pushover-Analysis-of-Infilled-Frame-Structures
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F IGURE 10 Proposed versus OpenSees obtained pushover curves of all 12 infilled frame structures

Gauss point, a section aggregator was employed in which a calibrated Pinching4 material provided the flexural section
response, as per O’Reilly and Sullivan,38 and the axial response was modelled as elastic. Infills were modelled as sin-
gle diagonal struts using the truss element. The axial backbone recommended by Sassun et al.19 was modelled with the
Pinching4material model.

5.2 Lateral force–displacement response

SPO analyses with triangular horizontal force vector were carried out on the case study structures in OpenSees, and five
displaced shapes, corresponding to different roof target displacements along the pushover curve of each structure, were
evaluated. These points were identified by studying the pushover curve to represent the altering global stiffness and the
characteristics of the analysed structure. The comparison between the proposed and the numerically computed pushover
curves, displaced shape profiles and the lateral force profile obtained can be seen, for some of the frames, in Figure 10 to
Figure 13.
In Figure 10, compared with the OpenSees model, the proposed method accurately captures each structure’s initial

stiffness and peak resistance. The post-peak drop in capacity upon infill failure is reasonably captured by the method as
well. In addition, observing the progression of the displaced shapes, the ability of the proposed method to identify the
inelastic mechanism is noteworthy. Both analyses indicate failure due to a soft-storey development at the second storey
for the six-storey frame and the first floor for the three-storey structure (Figure 11 and Figure 12). For the 3-bay bare frame
versions of these frames, Sullivan et al.13 identified soft-storey mechanisms at the fourth and the second storeys instead,
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F IGURE 11 Proposed versus OpenSees obtained displaced shape profiles for the three-storey- three-bay infilled frame

respectively. This discrepancy indicates that the proposed method can capture the frame-infill interaction induced effects
in the global mechanism of the infilled frame.
In Figure 12, a roof displacement of 4 cm results in cracking the infill panels at the second, first, third and fourth storeys,

in the given order. The soft-storey develops approaching the 6 cmmark at the second floor, as indicated by the infill demand
index. At this stage, the infill panels at the second storey have a negative stiffness, and the other storeys are unloading, as
described in Section 4.4. Hence, the drift demand at the second storey dramatically increases, transferring the lateral shear
carried by the infills to the surrounding frame. Eventually, since the strength of framemembers at the soft-storey is capable
of carrying the demand at an inelastic hardening state, the structure transforms into the aforementionedCase II (Figure 5),
where a potential weak storey is expected at the second storey even though the identified mechanism is a beam-sway at
this level using only the sway potential index. Finally, at 8 cm roof displacement, a column-sway mechanism forms at the
second storey following the flexural hinging at the top and bottom sections of the columns. The Pilotis Potential Index
computed at the first and second joint levels indeed yields a value higher than one, indicating an expected column-sway
mechanism at the second storey, which aligns well with the logic discussed in previous sections.
In Figure 11 and Figure 12, it is worth noting that the proposed method effectively captures the overall and local soften-

ing of the structure as the infill panels yield and eventually fail. There is an excellent match between the displaced shapes
obtained through pushover and the simplified method concerning the first two and last displacements analysed (i.e., 2, 3,
and 10 cm). Regarding the other two points examined (i.e., 6 and 8 cm), the discrepancy between the profiles follows a con-
sistent pattern in every case study structure. The discrepancy between the observed deformation capacities is attributed to
the OpenSees model’s ability to capture the redistribution of forces between bays and the transition between global mech-
anisms due to frame-infill interaction. Nevertheless, the overall matching and identification of the mechanism location
are deemed satisfactory.
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F IGURE 1 2 Proposed versus OpenSees obtained displaced shape profiles for the six-storey-five-bay infilled frame

Finally, in Figure 13, the evolution of the computed force vector based on the changing first mode shape of the structure
at each step can be observed. At the first displacement level examined (i.e., 2 cm), except for the last floor, the force vector
can be seen to increase linearly with height. Once the structure softens, the force vector gradually becomes more non-
uniform as it adapts to the change in the stiffness distribution across the structure’s height. This progression is akin to the
adaptive pushover methods available in the literature,48 whereby the load pattern adapts and responds to the structure’s
altering stiffness distribution and mode shape.

5.3 Comparison with other available approaches

First, the method proposed by Saborío-Romano,31 in close collaboration with Sullivan et al.,13 was evaluated. According
to this methodology, the drift attained by the infill panels was rendered as the additional rotational work done by the
storey moments and a stiffness value associated with the total work done by the infill panels at a storey is computed. No
consideration is given to the effects of the axial flexibilities at the lower storeys. Finally, the displaced shape is computed
using the secant stiffness as the characteristics of the structure updates. Since there are no considerations on the unloading
behaviour of the frame, it was only possible to compute the structure’s response until the peak capacity.
Second, Gentile et al.33 presented a simplified framework (SLaMA), an alternative to the procedure presented by Sul-

livan et al.,13 in which only the strut stiffness is utilised to estimate the infill contribution of the storey stiffness. For
column-sway structures, SLaMA recommends a step-by-step procedure in which the displaced shape of the structure is
computed using the secant stiffness corresponding to the updated state of the structure. The infill and frame responses
are computed separately and then superimposed to obtain the infilled frame response. The soft-storey is identified as



AKAN et al. 19

F IGURE 13 Proposed versus OpenSees applied horizontal force profiles for the six-storey-three-bay infilled frame

the storey having the lowest strength. Finally, the analysis is done by introducing drift at the soft-storey and calculating
structural response.
In light of the present study’s findings, some remarks to the procedure described by Gentile et al.33 are presented. Since

the failure mechanism considered for the bare frame structure may be altered due to frame-infill interaction, identifying a
specific mechanism for the infilled structure could be handled more accurately. First, the authors suggest that the proce-
dure described by Gentile et al.33 to identify the soft-storey for bare frames should be repeated considering the cumulative
(peak infill+ frame) resistance at a storey. Second, the Pilotis Potential Index at each storey (Equation 16) can be evaluated
to ensure that a column-sway type of failure is avoided for a beam-sway frame, as described in Section 3.2.3. Subsequently,
the use of secant stiffness makes the evaluation of the post-peak response impractical since the effect of unloading and
localisation cannot be considered, as discussed in Section 4.4. This simplification results in unrealistic displaced shapes
after the peak response, missing the permanent deformations accumulated at the soft-storey following a reduction in the
base shear. Hence, two different approaches were adopted to compute the softening part of SLaMA for the comparison
presented here. Based on the interpretation of the illustrations in Gentile et al.,33 SLaMA A assumes that the infills at the
soft-storey continue to soften until the frame at the same storey fails. This assumption enables the use of the storey secant
stiffness after the peak by assuming a hybrid softening stiffness. On the other hand, SLaMA B uses the secant stiffness for
the soft-storey and assumes an infinite unloading stiffness. An infinite unloading stiffness indicates that the unloading
storeys will keep their attained drifts as the storey shears decrease due to unloading. Both versions of SLaMA analysed
here align with the presented method and merely reflect how one analyst may interpret and implement it versus another.
Finally, Proposed A considers the added flexibility due to the columns’ axial stiffness, which is one of the critical devel-

opments of the proposed approach not considered in other methods in the literature. In contrast, Proposed B considers
the columns as axially rigid. The force–displacement curves and the associated displaced shapes computed using these
different methodologies are given in Figure 14 and Figure 15.
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F IGURE 14 Comparison of the force–displacement behaviour obtained with existing approaches for the 6-storey 5-bay medium infilled
frame

F IGURE 15 Comparison of the sway profiles obtained via existing methods for the six-storey fix-bay medium infilled frame

In Figure 14, the initial stiffness is captured by all methods satisfactorily. Compared to the others, Proposed B overes-
timates the initial stiffness since it ignores the strut flexibility of the columns. This aspect gets notably improved with
Proposed A compared to the OpenSees model result since the axial flexibility of the columns is captured in the OpenSees
model. Both SLaMA interpretations seem to underestimate the stiffness, while Saborio-Romano gives the best estimate
with a slight underestimation. The main reason for this discrepancy is that SLaMA and Saborio-Romano approaches rely
on the secant stiffness, whereas the proposed method is based on tangent stiffness. SLaMA and the proposed method
yield similar values at the peak response, while Saborio-Romano overestimates the response mainly due to the smear-
ing of the infill strength between the consecutive storeys. Moreover, as an advantage of employing the tangent stiffness,
besides capturing the critical aspects of the structure, the proposed method can trace the intermediate characteristics as
well such as the progressive cracking of the infill panels across storeys, unloading, failure of the infill, reloading of the
frame and the final softening of the structure. Similar to the step-by-set method in ATC-40, in the proposed method, the
structural response is computed incrementally, and a zero stiffness is assigned for the fully damaged elements, following
the prescription of the chosen backbone model. However, the proposed method can capture the progressive degradation
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of the structure in a single attempt without computing multiple pushover analyses, yielding a continuous curve, and does
not require prior knowledge about the global mechanism.
In terms of the displaced shapes (Figure 15), the method by Saborío Romano31 cannot capture the existing irregularity

in height (stiffer first storey), given that the contribution of the consecutive storeys is averaged. In the case of SLaMA, the
characteristics of the infilled frame are more pronounced. The effect of using secant stiffness after the peak can be seen
at a displacement of 7.5 cm. In SLaMA A, the floors except the soft storey reset when the base shear is reduced. SLaMA
B is an improvement, but due to the infinite unloading stiffness, high permanent displacements at the unloading storeys
result in a deviated response.

6 SUMMARY AND CONCLUSIONS

A simplified static analysis method was presented to allow analysts to estimate the force–displacement response of an
infilled RC framewithout resorting to sophisticated analysis tools. The proposedmethodwas built upon an existing frame-
work for the simplified analysis of bare frames susceptible to non-ductile mechanisms, typical of older buildings, built
before the emergence of modern design codes. The novelty of the proposed methodology refers mainly to the capability of
estimating the storey stiffness considering the contribution of the infill panels and frame-infill interaction. Furthermore,
it includes several refinements to the iterative analysis procedure that extend the existing framework to capture the highly
non-linear behaviour of the infilled frames. First, the horizontal flexural stiffness of the bare frame and axial stiffness of
the infills were computed by assuming that both systems work in parallel against the external forcing action. Then, frame
and infill counterparts were superposed to obtain the combined storey tangent stiffness. A novel index was proposed to
make additional considerations on the global mechanism of an infilled frame and in the case of a beam-sway frame to
check if a column-sway failure is possible. Implementation wise, an unbalanced convergence criterion was introduced,
and the infill demand index, IDi, was proposed. Finally, the effects of drift localisation were incorporated into the analysis.
As per Figure 4, bays are assumed towork in parallel. Due to this assumption, the complicated flow of forces fromupper-

storeys to the supports is significantly simplified. As a result of superposing the frame and the infill response, changes in
the frame and infill capacity due to frame infill interaction are ignored, as explored further by Bose et al.52 Pilotis Potential
Index (Equation 16) assumes infills do not carry any shear loading after peak response. Furthermore, a uniform horizontal
load vector is assumed across the structure’s height for the sake of simplicity. The response of the infilled frame is assumed
to be controlled by flexure. The possibility of having a shear or joint type of failure should be checked employing other
methods described in Section 3.1. The proposed method is limited to single strut models only. Further work is needed for
the strut models where more than one strut element is used to model the masonry infill with gaps or openings.
Finally, the proposedmethodwas applied to a set of RC case study frame structures with different infill typologies. Com-

parison with the response obtained with detailed numerical models showed that the proposedmethod efficiently captures
the salient features of infilled frames with non-ductile failure mechanisms. In particular, the evolution of the displaced
shape across the building height and the correct identification of critical storey locations were observed for many different
case study structures. The incorporation of the strut flexibility, which was previously not considered in the literature, was
shown to have a notable influence, and its consideration yielded accurate results. Comparing the performance of the pro-
posed method with other similar approaches available in the literature highlighted its benefits and advantages, not just
in terms of the final results but also how the further consideration via a Pilotis Potential Index, infill demand index and
consideration of the unloading stiffness may be used to improve existing approaches.

ACKNOWLEDGEMENTS
The work presented in this paper has been developed within the framework of the projects “Dipartimenti di Eccellenza”,
funded by the Italian Ministry of Education, University and Research at IUSS Pavia and “ReLUIS 2019–2021,” funded by
the Italian Department of Civil Protection.

DATA AVAILAB IL ITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analysed in this study.

ORCID
OnurDenizAkan https://orcid.org/0000-0003-4433-6596
Gerard J.O’Reilly https://orcid.org/0000-0001-5497-030X
RicardoMonteiro https://orcid.org/0000-0002-2505-2996

https://orcid.org/0000-0003-4433-6596
https://orcid.org/0000-0003-4433-6596
https://orcid.org/0000-0001-5497-030X
https://orcid.org/0000-0001-5497-030X
https://orcid.org/0000-0002-2505-2996
https://orcid.org/0000-0002-2505-2996


22 AKAN et al.

REFERENCES
1. Freeman SA. Prediction of response of concrete buildings to severe earthquake motion. ACI J. 1978;55(Special Publication):589-606.
2. Fajfar P. A nonlinear analysis method for performance-based seismic design. Earthq Spectra. 2000;16(3):573-592.
3. FEMA FEMA 356: Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency,

Washington, DC, USA. 2000.
4. ATC. ATC-40: Seismic Evaluation and Retrofit of Concrete Buildings. Redwood City, California, USA: Applied Technology Council; 1996.
5. CEN. Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings Eurocode.

Brussels, Belgium: European Committee for Standardization; 2004; p. 229.
6. Vamvatsikos D, Cornell CA. Direct estimation of the seismic demand and capacity of oscillators withmulti-linear static pushovers through

IDA. Earthq Eng Struct Dyn. 2006;35(9):1097-1117.
7. Nafeh AMB, O’Reilly GJ, Monteiro R. Simplified seismic assessment of infilled RC frame structures. Bulletin of Earthquake Engineering.

2020;18(4):1579–1611. https://doi.org/10.1007/s10518-019-00758-2
8. Cornell CA, Krawinkler H. Progress and challenges in seismic performance assessment. PEER Cent News. 2000;3(2):1-2.
9. McKenna F, Scott MH, Fenves GL. Nonlinear finite-element analysis software architecture using object composition. J Comput Civ Eng.

2010;24(1):95-107.
10. Seismosoft. SeismoStruct 2018 – A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. 2018. p. 505.
11. Carr AJ RUAUMOKO - User Manual, Theory, and Appendices. University of Canterbury, New Zealand. 2007.
12. CSI. SAP2000 Integrated Software for Structural Analysis and Design. Computers and Structures Inc.; 2019.
13. Sullivan TJ, Saborio-Romano D, O’Reilly GJ, Welch DP, Landi L. Simplified Pushover Analysis of Moment Resisting Frame Structures.

Journal of Earthquake Engineering. 2021;25(4):621–648. https://doi.org/10.1080/13632469.2018.1528911
14. Priestley MJN, Calvi GM. Towards a Capacity-Design Assessment Procedure for Reinforced Concrete Frames. Earthquake Spectra.

1991;7(3):413–437. https://doi.org/10.1193/1.1585635
15. PRIESTLEY MJN. DISPLACEMENT-BASED SEISMIC ASSESSMENT OF REINFORCED CONCRETE BUILDINGS. Journal of Earth-

quake Engineering. 1997;1(1):157–192. https://doi.org/10.1080/13632469708962365
16. Priestley MJN, Calvi GM, Kowalsky MJ. Displacement-Based Seismic Design of Structures. 1st Ed. IUSS Press; 2007:721.
17. Shibata A, Sözen MA. Substitute-Structure Method for Seismic Design in R/C. Journal of the Structural Division. 1976.102(1):1–18.
18. Fenerci A, Binici B, Ezzatfar P, Canbay E, Ozcebe G. The effect of infill walls on the seismic behavior of boundary columns in RC frames.

Earthq Struct. 2016;10(3):539-562.
19. Sassun K, Sullivan TJ, Morandi P, Cardone D. Characterising the in-plane seismic performance of infill masonry. Bull New Zeal Soc Earthq

Eng. 2016;49(1):98-115.
20. Furtado A, Rodrigues H, Arêde A, VarumH. Experimental Characterization of the In-plane and Out-of-Plane Behaviour of Infill Masonry

Walls. Procedia Engineering. Elsevier Ltd; 2015:862-869.
21. Shing PB, Mehrabi AB. Behaviour and analysis of masonry-infilled frames. Prog Struct Eng Mater. 2002 Jul 1;4(3):320-331.
22. Calvi GM, Bolognini D. Seismic response of reinforced concrete frames infilled with weakly reinforced masonry panels. J Earthq Eng.

2001;5(2):153-185.
23. Chiou Y-J, Tzeng J-C, Liou Y-W. Experimental and analytical study of masonry infilled frames. J Struct Eng. 1999;125(10):1109-1117.
24. Crisafulli FJ. Seismic Behaviour of Reinforced Concrete Structures with Masonry Infills. University of Canterbury; 1997.
25. O’Reilly GJ, Sullivan TJ. Probabilistic seismic assessment and retrofit considerations for Italian RC frame buildings. Bull Earthq Eng.

2018;16(3):1447-1485.
26. Perrone D, Leone M, Aiello MA. Evaluation of the infill influence on the elastic period of existing RC frames. Eng Struct. 2016;123:419-433.
27. Hak S, Morandi P, Magenes G, Sullivan TJ. Damage control for clay masonry infills in the design of RC frame structures. J Earthq Eng.

2012;16(SUPPL. 1):1-35.
28. Crisafulli FJ, Carr AJ, Park R. Analytical modelling of infilled frame structures - a general review. Bull New Zeal Soc Earthq Eng.

2000;33(1):30-47.
29. Thiruvengadam V. On the natural frequencies of infilled frames. Earthq Eng Struct Dyn. 1985;13(3):401-419.
30. Landi L, Tardini A, Diotallevi PP. A procedure for the displacement-based seismic assessment of infilled RC frames. J Earthq Eng.

2016;20(7):1077-1103.
31. Saborío Romano D, Performance Based and Simplified Displacement-Based Assessments of an Infilled RC Frame Building in L’Aquila,

Italy. Istituto Universitario di Studi Superiori di Pavia; 2016.
32. Cardone D, Flora A. Multiple inelastic mechanisms analysis (MIMA): a simplified method for the estimation of the seismic response of

RC frame buildings. Eng Struct. 2017;145:368-380.
33. Gentile R, Pampanin S, RaffaeleD,UvaG.Non-linear analysis of RCmasonry-infilled frames using the SLaMAmethod: part 1—mechanical

interpretation of the infill/frame interaction and formulation of the procedure. Bull Earthq Eng. 2019;17(6):3283-3304.
34. Priestley MJN, Ravindra V, Xiao Y. Seismic shear strength of reinforced concrete columns. J Struct Eng. 1994;120(8):2310-2329.
35. Tasligedik AS, Akguzel U, Kam WY, Pampanin S. Strength hierarchy at reinforced concrete beam-column joints and global capacity. J

Earthq Eng. 2018;22(3):454-487.
36. De Risi MT, Verderame GM. Experimental assessment and numerical modelling of exterior non-conforming beam-column joints with

plain bars. Eng Struct. 2017;150:115-134.

https://doi.org/10.1007/s10518-019-00758-2
https://doi.org/10.1080/13632469.2018.1528911
https://doi.org/10.1193/1.1585635
https://doi.org/10.1080/13632469708962365


AKAN et al. 23

37. Calvi G, Magenes G, Pampanin S. Relevance of beam-column joint damage and collapse in RC frame assessment. J Earthq Eng. 2002;6:75-
100.

38. O’Reilly GJ, Sullivan TJ. Modeling techniques for the seismic assessment of the existing italian RC frame structures. J Earthq Eng.
2019;23(8):1262-1296.

39. MohamedH, RomãoX. Analysis of the performance of strutmodels to simulate the seismic behaviour ofmasonry infills in partially infilled
RC frames. Eng Struct. 2020;222:111124.

40. Di Trapani F, Shing PB, Cavaleri L. Macroelement model for in-plane and out-of-plane responses of masonry infills in frame structures. J
Struct Eng. 2018;144(2):04017198.

41. Ricci P, Di DomenicoM, VerderameGM. Empirical-based out-of-plane URM infill wall model accounting for the interaction with in-plane
demand. Earthq Eng Struct Dyn. 2018;47(3):802-827.

42. Bertoldi SH, Decanini LD, Gavarini C, Telaitamponatisoggetti ad azioni sismiche, un modelosemplificato: confronto sperimentale e
numerico. In: Borri A, Perducci A. Atti del 6 Convegno Nazionale L’ingegneria sismica in Italia. Press Center of the University of Peru-
gia; 1993:815-824.

43. Decanini L, Mollaioli F, Mura A, Saragoni R, Seismic performance of masonry infilled R/C frames. In: 13th World Conference on Earth-
quake Engineering. Vancouver, BC, Canada; 2004.

44. PanagiotakosTB, FardisMN, Seismic response of infilledRC frames structures. In: EleventhWorldConference onEarthquakeEngineering.
Acapulco, Mexico: Elsevier Science Ltd; 1996.

45. Mucedero G, Perrone D, Brunesi E, Monteiro R. Numerical Modelling and Validation of the Response of Masonry Infilled RC Frames
Using Experimental Testing Results. Buildings. 2020;10(10):182. https://doi.org/10.3390/buildings10100182

46. Stafford Smith B, Carter C. A method of analysis for infilled frames. Proc Inst Civ Eng. 1969;44(1):31-48.
47. Asteris PG, Cotsovos DM, Chrysostomou CZ, Mohebkhah A, Al-Chaar GK. Mathematical micromodeling of infilled frames: state of the

art. Eng Struct [Internet]. 2013;56:1905-1921. http://doi.org/10.1016/j.engstruct.2013.08.010. Available from.
48. Antoniou S, Pinho R. Development and verification of a displacement-based adaptive pushover procedure. J Earthq Eng. 2004;8(5):643-661.
49. Stafford Smith B. Methods for predicting the lateral stiffness and strength of multi-storey infilled frames. Build Sci. 1967;2(3):247-257.
50. Crisafulli FJ, Carr AJ. Proposed macro-model for the analysis of infilled frame structures. Bull New Zeal Soc Earthq Eng. 2007;40(2):69-77.
51. Seismic Evaluation and Retrofit of Existing Buildings [Internet]. ASCE/SEI 4. Seismic Evaluation and Retrofit of Existing Buildings. Amer-

ican Society of Civil Engineers; 2017. Available from: https://ascelibrary.org/doi/10.1061/9780784414859
52. Bose S,Martin J, Stavridis A, Simulation Framework for Infilled RC Frames Subjected to Seismic Loads: doi:101193/042218EQS100M [Inter-

net]. 2019;35(4):1739-1762. Available from: https://journals.sagepub.com/doi/10.1193/042218EQS100M
53. Collins MP, Mitchell D. Prestressed Concrete Structures. Response Publications; 1997.
54. AkanOD,Displaced Shapes of Infilled RCFrames forDisplacement-BasedDesign andAssessment. IstitutoUniversitario di Studi Superiori

di Pavia; 2019.
55. O’Reilly GJ, Sullivan TJ. Fragility functions for eccentrically braced steel frame structures. Earthq Struct. 2016;10(2):367-388.
56. Sullivan TJ, Calvi GM. Considerations for the Seismic Assessment of Buildings Using the Direct Displacement-Based Assessment Approach.

Associazione nazionale di ingegneria sismica in Italia (ANIDIS); 2011.
57. Hall JF. On the descending branch of the pushover curve for multistory buildings. Earthq Eng Struct Dyn. 2018;47(3):772-783.
58. Galli M. Evaluation of the Seismic Response of Existing RC Frame Buildings with Masonry Infills. Istituto Universitario di Studi Superiori;

2006.
59. O’Reilly GJ. Limitations of Sa(T1) as an intensity measure when assessing non-ductile infilled RC frame structures. Bulletin of Earthquake

Engineering. 2021;19(6):2389–2417. https://doi.org/10.1007/s10518-021-01071-7
60. Scott MH, Fenves GL. Plastic hinge integration methods for force-based beam–column elements. J Struct Eng. 2006;132(2):244-252.
61. ACI Committee 318. ACI CODE-318-19: Building Code Requirements for Structural Concrete and Commentary [Internet]. 2019. p. 624.

Available from: https://www.concrete.org/store/productdetail.aspx?ItemID=318U19&Language=English

How to cite this article: Akan OD, O’Reilly GJ, Monteiro R. Simplified modelling and pushover analysis of
infilled frame structures accounting for strut flexibility. Earthquake Engng Struct Dyn. 2022;1–27.
https://doi.org/10.1002/eqe.3620

APPENDIX A:

Example application of the proposed procedure to a three-storey three-bay strong infilled RC frame with a
column-sway mechanism
The proposed simplified procedure (Figure 7) is applied here in detail to the three-storey three-bay strong infilled RC frame
structure shown in Figure 9. The procedure is fully demonstrated by evaluating the first point on the pushover curve of

https://doi.org/10.3390/buildings10100182
http://doi.org/10.1016/j.engstruct.2013.08.010
https://ascelibrary.org/doi/10.1061/9780784414859
https://journals.sagepub.com/doi/10.1193/042218EQS100M
https://doi.org/10.1007/s10518-021-01071-7
https://www.concrete.org/store/productdetail.aspx?ItemID=318U19&Language=English
https://doi.org/10.1002/eqe.3620


24 AKAN et al.

F IGURE A1 (A) Column and beam moment capacities of the frame members. Beam moments (+, –) are shown at the top right corner.
All beam sections are the same and the columns are symmetric. Points 0–3 refer to the subsequent points in the backbone of each section. (B)
After joint equilibrium is achieved for the initial limit state

TABLE A1 First three points of the storey frame backbone 𝜓i computed through simplified analysis

Frame Damage State 0 Frame Damage State 1 Frame Damage State 2
Storey F (kN) K (kN/m) Θ (rad) F (kN) K (kN/m) Θ (rad) F (kN) K (kN/m) Θ (rad)
3 89 3093 0.0096 96 182 0.0220 77 –170 0.0597
2 104 3793 0.0092 112 192 0.0231 90 –281 0.0498
1 129 5774 0.0081 138 220 0.0244 111 –443 0.0472

TABLE A2 The axial strut backbone for S21, the strut at the second storey first bay

Strut Damage
State 0 1 2 3
f21 (kN) 256 320 32 32
k21 (kN/m) 59078 8440 –12331 0
ε21 0.0008 0.0022 0.0089 0.02

the structure, which is displayed in Figure 10. The calculations for the rest of the points are available in the spreadsheet
made available for the structure, cited in Section 5.
The flexural strength points (at joint centrelines) points on the backbone curve of each structural element are shown in

Figure A1.a. It is assumed that beams and columns have enough shear strength to allow the development of plastic hinges.
The flexural strengths of columns are based on gravity-induced axial loads and computed via moment-curvature analysis.
The intermediate steps to calculate the storey shear contribution of the frame members are omitted for brevity. Interested
readers should refer to the study by Sullivan et al.13 for more detail. The equilibrium of flexural forces around each joint is
shown in Figure A1.b. The frame resistance is computed by summing over the flexural capacities of the column sections
at each storey and scaling by the storey height. Equilibrium is obtained for the rest of the points to obtain the storey frame
backbone.
The frame storey shear, stiffness and drift values computed following the methodology described by Sullivan et al.13 are

presented in Table A1.
In parallel, the infill contribution is computed by evaluating the axial strut strength and strain values (ε) (Table A2)

given by the chosen backbone model, Sassun et al.19 in this case. Then, for each strut, the tangent stiffnesses in the global
horizontal direction are computed. An example for the second storey is shown below.
For the initial limit, the contribution of the strut S21 fromFigureA1 to the global storey horizontal stiffness of the infilled

frame is computed with Equations (9) and (10). The strut angle is denoted by λ, and it is given by the clear storey height
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TABLE A3 First three points of the storey infill backbone 𝛽i computed through simplified analysis

Infill Damage State 0 Infill Damage State 1 Infill Damage State 2
Storey F (kN) K (kN/m) Θ F (kN) K (kN/m) θ F (kN) K (kN/m) θ
3 524 85649 0.0020 655 14270 0.0051 65 –19744 0.0150
2 531 94394 0.0019 664 14856 0.0049 66 –20418 0.0146
1 531 104818 0.0018 664 15500 0.0050 66 –21972 0.0149

TABLE A4 First three damage states of the storey system backbone 𝜁i computed through simplified analysis

Storey 1 Storey 2 Storey 3
System Damage S. DS Fsys. θsys. Ksys. DS Fsys. θsys. Ksys. DS Fsys. θsys. Ksys.

0 Inf.-0 561 0.0018 110592 Inf.-0 553 0.0019 98187 Inf.-0 543 0.0020 88742
1 Inf.-1 743 0.0050 21274 Inf.-1 719 0.0049 18649 Inf.-1 702 0.0051 17363
2 Fr.-0 603 0.0081 –16198 Fr.-0 504 0.0092 –16625 Fr.-0 477 0.0096 –16651

TABLE A5 Sway potential index, Sp and Pilotis Potential Index, Pp

Level Sp 𝑷𝒂𝒃𝒐𝒗𝒆
𝒑,𝟏

𝑷𝒃𝒆𝒍𝒐𝒘
𝒑,𝟏

Sway
Mechanism

𝚺𝑴
𝒃𝒐𝒕𝒕𝒐𝒎
𝒄𝒐𝒍.

(kNm)
𝚺𝑴

𝒕𝒐𝒑

𝒄𝒐𝒍.

(kNm)
𝚺𝑴𝒊𝒏𝒇𝒊𝒍𝒍

(kNm)
𝒉𝒔𝒕𝒓𝒚
(m)

𝚺𝒉𝒔𝒕𝒓𝒚
(m)

OTM
(kNm)

3 4.08 n.a. n.a Column n.a. 134 1571 3 3 3
2 1.84 3.98 6.69 Column 134 157 1594 3 6 9
1 1.58 3.15 4.32 Column 157 172 1461 2.75 8.75 17.75

divided by the clear bay length shown in Figure 3. The ACI 31861 formula is used for the concrete modulus.

cos2𝜆21 = (0.86)
2
= 0.74 where 𝜆21 = tan−1

(
hw
lw

)
= tan−1

(
2.5m
4.25m

)
= 0.53rad

The contribution of infills to the lateral storey resistance at the second storey is computed as:

F1
inf ill,2

= f 1
strut,(21)

cos𝜆21 + f1
strut,(22)

cos𝜆22 + f1
strut,(23)

cos 𝜆23 = 2 (256)(0.86) + (158)(0.57) = 531kN

The unit horizontal displacement of the strut at the second storey first bay due to a unit lateral force is:

𝛿1
21
=

1

(cos2𝜆21)
(
k0
strut,(21)

) +
tan2𝜆21

k0
column,(21)

+
tan2𝜆11

k0
column,(11)

+
tan2𝜆12

k0
column,(12)

=
1

(0.74) (59078)
+
(0.59)

2

433496
+
(0.59)

2

472904
+
(0.59)

2

472904
= 2.5 × 10−5m

The axial stiffness contribution of the second storey infills to the storey stiffness is:

K0
axial,2

=
1

𝛿1
21

+
1

𝛿1
22

+
1

𝛿1
23

=
1(

2.5 × 10−5
) +

1(
6.88 × 10−5

) +
1(

2.5 × 10−5
) = 94394kN∕m

The storey infill backbone is established by evaluating the infill resistance, tangent horizontal stiffness and the drift
values, shown in Table A3.
Finally, Table A1 and Table A3 are combined to obtain Table A4 based on the parallel spring assumption presented in

Figure 3. First, the damage states identified in both frame and infill steps are sorted in ascending order based on the drift
values. Then, the stiffness pair associated with each system damage state is summed. An example for the system damage
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TABLE A6 Calculations of Steps 1–2 for the initial point on the pushover curve

Storey 𝚫𝒕
𝒊
(m) mi 𝑭𝒕

𝒊
(kN) 𝑽𝒕

𝒊
(kN) 𝑭𝒕

𝒇𝒓,𝒊
(kN) 𝑭𝒕

𝒊𝒏𝒇,𝐢
(kN) SDi IDi 𝑽𝒕

𝒕𝒓𝒖𝒆,𝒊
(kN) ΔV

3 0.0088 38 275 275 9 250 0.10 0.48 260 15.3
2 0.0058 40 193 468 11 280 0.11 0.53 291 176.2
1 0.0028 40 92 560 16 297 0.12 0.56 313 247.0

TABLE A7 Calculations of Steps 3–6 for the initial point (iterations 1–2)

Storey 𝑽𝒕+𝟏

𝒊
(kN) 𝑲𝒌

𝒔𝒚𝒔,𝒊
(kN/m) 𝜹𝒕+𝟏

𝒊
(m) 𝚫𝒕+𝟏

𝒊
(m) ΔV 𝑽𝒕+𝟏

𝒊
(kN) 𝜹𝒕+𝟏

𝒊
(m) 𝚫𝒕+𝟏

𝒊
(m) ΔV

3 275 86553 0.0032 0.0129 –21.7 250 0.0029 0.0125 –2.9
2 468 97140 0.0048 0.0097 –10.8 455 0.0047 0.0096 –1.8
1 560 113758 0.0049 0.0049 0.0 560 0.0049 0.0049 0.0

state 0 and 1 of the second storey is shown below:

K0
system,2

= K0
f lexural,2

+ K0
axial,2

= 3793 + 94394 = 98187kN∕m

K1
system,2

= K0
f lexural,2

+ K1
axial,2

= 3793 + 14856 = 18649kN∕m

The limit storey shear resistance associated with the system damage state is computed using the limit drift and the state
stiffness, as shown here for the damage state 1 of the second storey: A6,A7

F2
system,2

= F1
sysytem,2

+ K1
system,2

.
(
𝜃2
system,2

− 𝜃1
system,2

)
.hstorey,2

= 553 + 18649 ⋅ (0.0049 − 0.0019) ⋅ (3) = 719𝑘𝑁

With Table A4, the modelling part is complete. Before starting with the analysis part, the sway potential index, 𝑆𝑝 and
Pilotis Potential Index, 𝑃𝑝are computed as in Table A5. As an example, 𝑃𝑝 for joint level 1 is computed as:

𝑃𝑎𝑏𝑜𝑣𝑒
𝑝,1

=

(∑
𝑀𝑖𝑛𝑖𝑓𝑙𝑙,𝑖

)
ℎ𝑠𝑡𝑜𝑟𝑒𝑦,(𝑖+1) (𝑁 − 𝑖)∑

𝑀𝑏𝑜𝑡𝑡𝑜𝑚
𝑐𝑜𝑙𝑢𝑚𝑛,(𝑖+1)

(∑𝑁

𝑎=𝑖
(
∑𝑁

𝑏=𝑎
ℎ𝑠,𝑏)

) =
(531 × 2.75) ⋅ (3.0) ⋅ (2)

(30.8 + 2 × 44.7 + 36.4) ⋅ (17.75)
= 3.15

𝑃𝑏𝑒𝑙𝑜𝑤
𝑝,1

=

(∑
𝑀𝑖𝑛𝑖𝑓𝑙𝑙,(𝑖+1)

)
ℎ𝑠𝑡𝑜𝑟𝑒𝑦,𝑖 (𝑁 + 1 − 𝑖)∑

𝑀
𝑡𝑜𝑝

𝑐𝑜𝑙𝑢𝑚𝑛,𝑖

(∑𝑁

𝑎=𝑖
(
∑𝑁

𝑏=𝑎
ℎ𝑠,𝑏)

) =
(531 × 3.0) ⋅ (2.75) ⋅ (3)

(30.8 + 2 × 49.6 + 41.5) ⋅ (17.75)
= 4.32

The expected frame inelastic mechanism can be checked using Table A5. Note that, during the frame computations
above, the column-sway drift equation proposed by Sullivan et al.13 is employed while computing the drift limits of the
frame members. Since Table A5 does indicate a column sway mechanism at each floor, the computed frame capacities do
not need revision. Furthermore, in the case of a beam-sway frame, the frame drift limits would be updated at this step
using the proper equation (i.e., column-sway equation). In the example above the contribution of infill moments at other
storeys is not included since the ratio is already greater than unity.
After verifying that the expectedmechanism, column sway, is in agreement with the frame capacity calculationmethod

at each floor, the analysis of the infilled frame is started. Evaluating the displacement and shear profile for a target base
shear 𝑉𝑡𝑎𝑟𝑔𝑒𝑡

𝑏
= 𝐹1

𝑠𝑦𝑠𝑡𝑒𝑚,1
= 560 kN:

∙ Step 1. Estimate a guess displacement profile; either linear ( Δ𝑡
𝑖
= 𝜃guess 𝐻storey) or the committed profile at the end of

the previous step ( Δ𝑡
𝑖
= Δ𝑡−1

𝑖
), if available. Take initial 𝜃guess = 0.001 rad;

∙ Step 2. Compute the storey shear demand profile 𝑉𝑡
𝑖
for Δ𝑡

𝑖
using Equations (21) and (22), as shown in Table A6;

∙ Step 3. Obtain a new displacement profile Δ𝑡+1
𝑖

using Equations (24) and (25);
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TABLE A8 Calculations of Steps 3–6 for the initial point (iteration 3) and values after convergence

Storey 𝑽𝒕+𝟏

𝒊
(kN) 𝜹𝒕+𝟏

𝒊
(m) 𝚫𝒕+𝟏

𝒊
(m) 𝑽𝒕+𝟏

𝒊
(kN) 𝑭𝒕+𝟏

𝒇𝒓,𝒊
(kN) 𝑭𝒕+𝟏

𝒊𝒏𝒇,𝐢
(kN) SDi IDi ΔV

3 250 0.0029 0.0125 250 9 241 0.10 0.46 –0.4
2 455 0.0047 0.0096 455 18 437 0.17 0.82 –0.3
1 560 0.0049 0.0049 560 28 531 0.22 1.00 0.0

∙ Step 4. Compute the new story’s shear demand profile 𝑉𝑡+1
𝑖

. Compute the sway (SDi) and infill (IDi) demand indices for
each storey and revise the base shear;

∙ Step 5. Evaluate the storey unbalanced load using Equations (26) and (27). Repeat the calculation from Step 3 until the
unbalanced load is zero at every floor and SDi or IDi at a level reach unity. Consider a new estimate of base shear equal
to the first one divided by the maximum sway or infill demand index;

∙ Step 6. When an infill or frame member reaches capacity at a floor, update the member’s resistance, drift and stiffness.
Finally, mark the base shear versus roof displacement point on the pushover curve and repeat from Step 1 for a new
target base shear estimate, as shown in Table A7.

In Table A8, after convergence, the initial point on the pushover curve is identified as follows:

𝐹𝑜𝑟 Δ𝒕
𝒓𝒐𝒐𝒇

= 0.0125 𝑚 → 𝑉𝑆𝐷𝑂𝐹 = 𝑀𝑂𝑇𝑀 ∕ 𝐻𝑒𝑓𝑓. = (250 × 3 + 455 × 3 + 560 × 2.75) ∕6.53 = 560 𝑘𝑁

Since the IDi at the first level has reached unity after convergence is achieved, the damage state of the level is updated.
From now on, the updated mechanical properties of the first floor will be used in the iterations (Table A.10). For the next
point on the pushover curve, the previous procedure is repeated with the updatedmechanical parameters of the first floor.
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