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Abstract
Performance-based earthquake engineering (PBEE) has become an important frame-
work for quantifying seismic losses. However, due to its computationally expensive
implementation through a typically detailed component-based approach (i.e. Federal
Emergency Management Agency (FEMA) P-58), it has primarily been used within aca-
demic research and specific studies. A simplified alternative more desirable for practi-
tioners is based on story loss functions (SLFs), which estimate a building’s expected
monetary loss per story due to seismic demand. These simplified SLFs reduce the
data required compared to a detailed study, which is especially true at a design stage,
where detailed component information is likely yet to be defined. This article pro-
poses a Python-based toolbox for the development of user-specific and customizable
SLFs for use within seismic design and assessment of buildings. It outlines the imple-
mentation procedure alongside a comparative demonstration of its application where
dependency and correlation of damage states between different components are
considered. Finally, a comparison of SLF-based and component-based loss estimation
approaches is carried out through the application to a real case study school building.
The agreement and consistency of the attained loss metrics demonstrate the quality
and ease of the SLF-based approach in achieving accurate results for a more expedite
assessment of building performance.
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Introduction

Performance-based earthquake engineering (PBEE) (Cornell and Krawinkler, 2003) is
widely recognized as a fundamental framework for characterizing seismic risk, using terms
that are more meaningful to stakeholders and practitioners. These performance measures
can be subdivided into three categories: losses, downtime, and casualties/fatalities. Instead
of describing performance at discrete hazard levels, as is typically prescribed in design
codes (e.g. American Society of Civil Engineers (ASCE) 7-16, 2016; Comité Européen de
Normalisation (CEN) EN 1998-1, 2004; NZS 1170.5:2004, 2004), it acts as a fully prob-
abilistic framework with the inclusion of uncertainties for hazard, structural response,
damage, and monetary loss.

Due to the probabilistic nature of the framework and its computationally expensive
implementation, it has become popular primarily within academic research or specialized
reports, such as FEMA P-58-1 (2012a), rather than a widespread code-based implementa-
tion for practitioners. This is especially true for the design of new structures, as practi-
tioners may be hesitant to carry out a full loss-driven design consisting of many trials and
iterations. For the seismic assessment of existing buildings, a full inventory of all the build-
ing components may be known, but for new designs, this information is yet to be identi-
fied. Moreover, many researchers have developed risk-targeted design methods over the
years (Aschheim and Black, 2000; Cornell, 1996; Kennedy and Short, 1994; Krawinkler
et al., 2006; Luco et al., 2007; O’Reilly and Calvi, 2019; Shahnazaryan and O’Reilly, 2021;
Vamvatsikos and Aschheim, 2016; Žižmond and Dolšek, 2019). Risk-targeted approaches
use collapse risk as the primary design objective, while others (Krawinkler et al., 2006;
O’Reilly and Calvi, 2019; Shahnazaryan and O’Reilly, 2021) explore the possibility of uti-
lizing economic loss. To simplify the codification of these approaches, where lack of initial
data are inevitable, alternatives are sought.

A simplified alternative to PEER’s building-specific loss estimation methodology was
developed by Ramirez and Miranda (2009). The idea was to create engineering demand
parameter versus decision variable (EDP–DV) functions, which relate the structural
response parameters, or EDPs, directly to economic losses, or DVs. These functions typi-
cally define monetary loss at a story level hence are termed story loss functions (SLFs).
They reduce the computational effort by providing ready-made loss functions that
describe the repair costs over a predefined building inventory of damageable components
in a simplified manner. They, therefore, reduce the amount of data required to be handled
for the building’s inventory when estimating losses. As stated previously, this is particu-
larly important at the design phase, where the components of the building are not known
in great detail. Generic SLFs would help minimize this issue by reducing the excessive
computational effort required in component-based approaches. These SLFs have been
recently implemented, for instance, in Silva et al. (2020b) for steel buildings in a European
context, whereas suitable options for reinforced concrete (RC) buildings are still missing.
Furthermore, the possibility for users to tailor and personalize their damageable invento-
ries, repair actions, and repair costs to arrive at more fine-tuned SLFs is also currently
unavailable.

The approach utilized in this study is based on the story loss estimation framework by
Ramirez and Miranda (2009), which is used to develop a toolbox for creating generic user-
based SLFs. Component quantities, fragility, and consequence functions are used as input
components to generate FEMA P-58-1 (2012a) compatible SLFs. The method proposed
by Ramirez and Miranda (2009) uses the 2007 RS Means Square Foot Costs (Balboni,
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2007), applicable to the United States only, to estimate the building cost distributions for
different RC building occupancies in California. The main difference of the more recent
proposal by Papadopoulos et al. (2019) was the use of the FEMA P-58-1 (2012a) database,
where the functions were customizable with respect to replacement cost and to reflect
building’s floor area. The functions developed by Papadopoulos et al. (2019) were devel-
oped for steel buildings in Greece; however, no damage or spatial correlation was consid-
ered among the different components, as opposed to the former approach. To aid the
generation of EDP–DV functions or loss assessment in general, significant research has
been carried out with the goal of developing fragility and consequence functions for vari-
ous structural and non-structural components. For example, fragility and consequence
functions were developed for unreinforced masonry (URM) buildings by Ottonelli et al.
(2020), many others have focused on masonry infill walls (Cardone and Perrone, 2015;
Chiozzi and Miranda, 2017; Del Gaudio et al., 2019; Ruiz-Garcı́a and Negrete, 2009;
Sassun et al., 2016), while some concentrated on developing functions for RC structural
components (Aslani and Miranda, 2005; Cardone, 2016). Furthermore, recent studies on
loss estimation (Perrone et al., 2019; Sullivan, 2016) highlighted the need for developing
SLFs to cover a wide range of building characteristics (i.e. story-wise functionality, typol-
ogy of structure, occupancy, and use of a building). Sullivan (2016) presented a simplified
loss assessment approach to calculate the expected annual loss (EAL), which could act as
a quick estimation tool for identifying necessary design or retrofit choices early in a project
and effectively reduce the monetary costs. However, a limitation was highlighted, whereby
the knowledge of quantity, distribution, and characteristics of all damageable components
within the building inventory might not always necessarily be readily available and, to
address it, SLFs could be used. On the contrary, Perrone et al. (2019) proposed a method
for estimating EAL of Italian RC buildings, which also utilizes suitable SLFs, further
demonstrating the need to develop simplified alternatives.

The aim of this study is to present a toolbox that allows the automated production of
SLFs through regression analysis using the results of random sampling of component
damage states (DSs) and costs, including damage correlation among components. The
goal is not the development of generic loss functions for specific building occupancies but
the development of a tool for practitioners to create their own functions, based on their
needs using an existing database of components, such as FEMA P-58 or any other means
(e.g. expert judgment), without being limited to existing SLF libraries. The framework
implemented within the toolbox is outlined in this study and an example application is pre-
sented. The main decisions to be made before using the toolbox include the building char-
acterization through the definition of the component inventory, defined by component
quantities, fragility, and consequence functions; performance grouping of components
based on EDP sensitivity; identification of possible interactions among various compo-
nents; choice of the number of simulations for the sampling of DSs; and choice of regres-
sion fitting type. Finally, the framework is validated via a case study application to an
existing school building, and the results are compared with a component-based loss assess-
ment of the same building.

Development of an SLF estimation toolbox

The framework utilized herein defines SLFs as based on component inventories and their
classification into different component groups. For the proper estimation of repair costs
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associated with each component, consistent integration of component fragilities with
repair costs at the story level is carried out. The framework consists of the following
steps (Figure 1):

1. Building characterization;
2. Component inventory definition;
3. Component grouping;
4. Consideration of correlations between components;
5. Monte Carlo simulation of DSs;
6. Repair cost computation;
7. Story loss function fitting.

Step 1: building characterization

The first step of the framework foresees examining the characteristics of the building of
interest. The user should have relevant information on the structure’s height, namely num-
ber of stories, global dimensions, occupancy type, and usage. In many situations, the
building’s components will vary on a story-by-story basis (i.e. the components will not
necessarily be identical in type and quantity at the ground floor, roof level, and intermedi-
ate stories). For example, the contents of the ground story of a residential building may
vary significantly in terms of structural and non-structural components compared to
upper stories, since this may comprise commercial space or car parking. In contrast, the
roof level generally includes components, such as HVAC (heating, ventilation, and air
conditioning) equipment or necessary equipment for geared elevators, which are not
located at other stories. All such considerations need to be made to arrive at a comprehen-
sive description of the building’s characteristics and where the damageable components
are distributed.

Figure 1. Flowchart of story loss function generation framework.
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Step 2: component inventory

Once the occupancy type, structural typology, and other specific building characteristics
have been established, the damageable component inventory can be created. There are sev-
eral methods to aid the user to gain insight into the possible distribution of components if
it is not preliminarily known, as is the case for new designs. The distributions, which
assume knowledge of mean and uncertainty of a given component quantity, may be
obtained from empirical and statistical data, collected from existing buildings and surveys,
or based on expert opinion or personal judgment when such information is unavailable.
The inventory consists of structural, non-structural components, and story contents likely
to be damaged, which contribute to the economic losses associated with required repair
costs.

In general, the component data inventory should have information on item types, quan-
tity of each component, EDP sensitivity, and typology (structural or non-structural) of
each component. Three performance groups are to be identified unless otherwise specified,
and fragility and consequence functions for the components should be available. To define
the component database, DSs with corresponding fragility and consequence functions
accounting for best fitting function suggestions (e.g. normal, lognormal, etc.) may be
adapted from the FEMA P-58 database or other similar sources.

Another consideration to account for is to distinguish whether certain components will
be affected by the peak floor acceleration (PFA) of the floor slab above the current story
or by the supporting floor slab. For instance, the water distribution piping system con-
nected to the ceiling in a story will be sensitive to the PFA of the above floor, while con-
tents (e.g. electronic equipment or contents) will be sensitive to the PFA of the supporting
floor. To account for this, a simplifying assumption is made in the tool. The component
losses in the story i, but affected by the upper floor, are computed as part of, or moved to,
story i+ 1. This essentially means that the estimation of total costs in the building is theo-
retically correct, but the physical location of the costs is not (i.e. a story i component loss
sensitive to PFA of the floor above will see its cost be logged as story i+ 1 losses). This
assumption was deemed suitable when considering the alternative simplifying assumption
of utilizing the incorrect PFA demand at story i, and subsequently an incorrect loss, to
maintain the correct story location.

Finally, to generate a component inventory in a meaningful manner, it is important to
be aware that, during assessment, even if component information is known, it might not
be possible to count the entire physical inventory precisely. A distinction could be made
concerning the reference area used for the component inventory. For that purpose, as in
FEMA P-58, an approach assuming quantities per meter squared may be applied, which
are then scaled to a unit area (e.g. 100 m2). Then, by counting only the stock of individual
components, the quantities are extrapolated to arrive at an estimated amount of a compo-
nent type within a story. However, this is only applicable to components whose inventory
is large enough and when the counted components are representative. For example, eleva-
tor or HVAC systems are specific to certain locations of the building (i.e. neither distribu-
ted along with the height nor the area of the building). Hence, in this case, scaling per
meter square will not be applicable and unitary estimates based on floor area thresholds
should be considered instead.

The framework adopted in this study assumes two-dimensional (2D) structural model-
ing, where the damageable components are oriented in the same direction. However,
should one apply the framework to three-dimensional) 3D buildings, the SLFs could be
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calculated by making assumptions on how the building components of different orienta-
tions are distributed. In particular, functions for both directions of a story for that specific
component could be developed. Essentially, the framework could be applied in each direc-
tion separately with appropriate care and consideration. To be specific, the analyst would
need to identify, for each damageable component considered at each story level, in which
principal direction of the building it is sensitive to damage. This way, the components can
be grouped and analyzed separately using the structural demands in the two orthogonal
directions. Furthermore, in the case of non-directional components, such as the
acceleration-sensitive non-structural components analyzed in the case study building,
where both directions of the seismic action are of importance, the maximum value of the
two demand parameters in both directions may be multiplied by a non-directional conver-
sion factor, as suggested in FEMA P-58, and used for a single SLF in the analysis.
However, similar to components located on different stories and within different perfor-
mance groups, interactions of seismic effects in the two directions on a given component
are not accounted for and in cases where such interaction is expected to be significant,
more advanced methods of loss assessment should be adopted.

Step 3: component grouping

Once the component inventory has been identified, depending on the type of components
(i.e. structural or non-structural) and their sensitivity to a specific EDP (i.e. to peak story
drift (PSD) or PFA), the components are classified into performance groups. Three perfor-
mance groups are established: PSD-sensitive structural, PSD-sensitive non-structural, and
PFA-sensitive non-structural components. Components within a performance group will
be assessed together for a mutual demand and subsequent losses will be summed up to esti-
mate the group’s SLF. In other words, losses from all components within a performance
group will be tied to the same EDP.

As in the case of similar past studies (Papadopoulos et al., 2019; Ramirez and Miranda,
2009), the effects of other EDPs, such as vertical acceleration or building torsion, are not
accounted for herein. In addition, torsion could be better dealt with adopting a
component-based approach, as discussed in O’Reilly et al. (2017). However, it is impor-
tant to keep in mind that if one is to provide the toolbox with fragility and consequence
functions associated with components other than PSD or PFA sensitive (e.g. peak floor
velocity, PFV), the toolbox will still be capable of producing the corresponding desired
SLFs.

In addition to having a separation between different component typologies, the classifi-
cation into performance groups allows the disaggregation of losses at the later stages to
identify the main contributors to the economic losses. This is especially important for
visualization purposes, as the loss contribution from collapsing and non-collapsing cases
may be easily established along with loss contributions of individual stories and perfor-
mance groups (e.g. structural and non-structural components).

Step 4: consideration of correlations between components

Structural and non-structural components that are sensitive to the same EDP may be
grouped to allow the consideration of possible correlations between different performance
groups. For example, even though a specific intensity level might not entail damage to a
specific non-structural component alone, a structural component connected to it might be
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damaged. This means that to repair the structural component, access should be first
granted, which foresees the removal of the portion or the entirety of the undamaged non-
structural component. When dependencies are considered, it was shown (Ramirez and
Miranda, 2009) that there may be an error if the repair cost of the dependent component
is counted twice. For example, the columns in a moment-frame building and internal par-
titions may be damaged but the repair cost of a dependent component may be counted
twice (the so-called double-counting). Hence, care should be taken to provide proper
repair costs and to establish correct relationships between components that best align with
their actual physical relationship. Essentially, for any component i, if it is not dependent
on any other component, then all its DSs are assumed to have an independent sequential
occurrence unless otherwise specified and each DS is assumed to be mutually exclusive
(i.e. the occurrence of one damage state means that the other ones will not happen). A
probability of occurrence is assigned (see Step 5) to mutually exclusive DSs, which sums
up to 100%. Otherwise, if DS j of component i is also dependent on the occurrence of a
DS d of a component m, then the DS of component i is assumed independent of compo-
nent m unless component m is in DS d or higher (i.e. DS d in component m triggers DS j
in component i). For dependent components, this triggered DS, DStrig, is identified, which
is based on the causation DS of another component, as illustrated in Figure 2. In the
example, for an EDP of edp, once the causation component m is in DS3, even if the fragi-
lity parameters of the dependent component i do not indicate any damage, it will still be
in DS2, as it depends on the DS of component m (i.e. the dependent component’s trig-
gered DS is DS2). Analogously, if component m is in DS2, then the triggered DS of i is
DS1.

Step 5: Monte Carlo simulation of DSs and repair costs

With the component inventory identified, along with the fragility and consequence func-
tions and possible correlations among the DSs of different components, Monte Carlo
simulations are performed. For each simulation, damage and repair costs are sampled for
each component of the performance group and each cost is added to obtain the perfor-
mance group’s total loss for a given EDP. Figure 3 presents a flowchart illustrating the
algorithm for the estimation of SLFs. For both uncorrelated components, where indepen-
dence of each component is assumed, and in case of existing correlation among different
component types, the algorithm samples DSs for each component at each EDP level and a
specified number of simulations. Essentially, a random value is generated between 0 and 1
representing the probability of being in a DS; then, a DS is assigned to a component based
on its fragility functions (Figure 4). This process, described in Step 4, is repeated for each
dependent component for the population of the DS matrix. For example, to assign a DS
to a component from the simulations, if EDP = 0.02 (point 1 in Figure 4) and the

Figure 2. Relationship between causation and dependent components.
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Figure 3. A sampling of damage states using Monte Carlo simulation.

(a) (b)

Figure 4. Damage states and fragility functions of a sample (a) causation component and (b) dependent
component.
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sampled probability for the causation component is 0.3, then DS3 is assigned to the com-
ponent. In the same example, the sampled probability for the dependent component is 0.8
for EDP = 0.02, meaning that DS1 is assigned. Following the relationship of the compo-
nents described in Figure 2, the DS of the dependent component is modified to DS2.
Alternatively, for EDP = 0.03 (point 2 in Figure 4), if through the same process DS2 and
DS3 are assigned to the causation and dependent components, respectively, following the
relationship in Figure 2, no modifications would be required.

Step 6: repair cost computation

With the DSs assigned to the components per Monte Carlo simulation, repair costs may
be evaluated (Figure 5). For each component at each sampled DS, repair costs are assigned
based on the provided consequence functions. In case the consequence function is repre-
sented solely through the mean value, then the mean value is assigned. If a distribution of
the repair cost is provided (i.e. mean and standard deviation if normally distributed or
median and dispersion for lognormal distributions), then a random value is sampled from
the distribution and a corresponding repair cost is assigned to consider the uncertainty in
estimating repair costs also.

To normalize the repair costs, a replacement cost of the building, ReplCost, should be
provided by the user or else be set equal as unity, meaning that no normalization is carried
out. The previously identified repair cost of component i at simulation k, ci, k(qi), may then
be normalized using Equation 1:

Ĉi, k =
ci, k qið Þ

ReplCost
ð1Þ

where Ĉi,k is the normalized repair cost of component i at simulation k and qi is the quan-
tity of component i, of which the repair cost is a function (i.e. the repair cost per unit may
decrease with increased units). As illustrated in Figure 6, based on qi, the mean repair cost,
ci, is obtained, which is used in conjunction with the coefficient of variation, cov, for

Figure 5. Assignment of component repair costs based on sampled damage states.
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generating a normal distribution of repair cost. Finally, a value of ci,k(qi), is randomly
sampled from the distribution.

Then, the total normalized repair cost at simulation k, for component i, Ĉtotal,i,k, is
computed through a summation of the repair costs of all the components according to
Equation 2:

Ĉtotal, i, k = Ĉi, kqi ð2Þ

The normalized total repair cost of story st at simulation k, Ĉst,k, will be the sum of nor-
malized repair costs of all components at that story, as per Equation 3:

Ĉst, k =
Xm

i = 1

Ĉtotal, i, k ð3Þ

where m is the number of component types within the story inventory.

Step 7: storey loss function fitting

With the component inventory defined and classified into performance groups, along with
the consideration of possible correlations among various components, the SLFs for com-
ponent groups may be identified through regression analysis on the normalized repair
costs sampled. More than one analytical expression may be used within the toolbox, while
possible addition of new functions may be considered, as future research identifies better
alternatives. The Weibull cumulative distribution function may be used to perform the
regression, which is defined in Equation 4:

y = a 1� exp � x

b

� �g� �� �
ð4Þ

where, a, b, and g are the fitting coefficients, x is the EDP value, and y is the fitted loss
ratio value.

Figure 6. Consequence function describing the relationship of repair cost as a function of quantity.
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Alternatively, the regression model proposed by Papadopoulos et al. (2019), defined in
Equation 5, may be used:

y = e
xa

ba + xa
+ 1� eð Þ xg

bg + xg
ð5Þ

where, a, b, g, d, and e are the fitting coefficients of the regression analysis, x is the EDP,
and y is the fitted loss ratio. The accuracy of the regression is then gauged through the esti-
mation of maximum, errormax, and cumulative, errorcum, relative regression errors over the
EDP range for each component performance group, according to Equations 6 and 7:

errormax = max
CEDP

repair � ĈEDP
repair

��� ���
max CEDP

repair

� �
0
@

1
A ð6Þ

errorcum =

ZEDP = maxEDP

0

CEDP
repair � ĈEDP

repair

��� ���
max CEDP

repair

� �
0
@

1
AdEDP ð7Þ

where CEDP
repair and ĈEDP

repair are the original and fitted repair costs, respectively.

Summary

The proposed framework yields, as main outputs, SLFs for each performance group
(Figure 1). Loss estimation can then be carried out similar to the FEMA P-58 guidelines,
which utilizes a probabilistic approach for estimation of damage and corresponding loss.
The losses are scaled based on the unit area considered, which could be a small portion of
the story area or the total area of the story.

While the total loss may be expressed via a monetary measure such as dollars or euros,
one may opt to normalize the fitted SLFs with respect to the total story cost (Equation 1),
so that they may be scaled or converted to match the common standards of any country.
However, attention should be paid to how and where from the component fragility and
consequence functions are obtained, given that the data from FEMA P-58, when used out-
side the United States, even if scaled by a conversion factor, might not be appropriate. In
such cases, a rational conversion specific to a country, as proposed by Silva et al. (2020a),
is recommended.

The final stage of estimating SLFs involves a regression on the generated data to obtain
the fitted curves, which may be carried out assuming Equations 4 or 5. The tool itself is
implemented in a Python script (Shahnazaryan et al., 2021). Figure 7 illustrates the pro-
gram structure of the entire SLF generator module and Figure 8 presents an overview of
the main interface of the toolbox.

Characterization of case study building

For the demonstration of the toolbox and generation of EDP–DV functions, a case study
building was adopted from O’Reilly et al. (2018) for a testing and validation exercise to be
compared with component-based assessment following the FEMA P-58 guidelines. For
this, typical cost distributions for the case study building need identification. The selected
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Figure 7. Programming structure of the SLF generation toolbox.

Figure 8. Overview of the story loss function generator interface.
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school building, constructed in the 1960s, consists of three stories and has an RC frame
with masonry infills as the lateral force-resisting system. The aforementioned study
(O’Reilly et al., 2018) provides the distribution of the structural and non-structural com-
ponents, their fragility, and consequence functions. Figure 9 illustrates the structural con-
figuration of the case study building. The building has RC square columns of 30 cm and
beams of 30 3 50 cm, which were designed for gravity loads only. Infills were identified as
double leaf 12 cm hollow clay brick with a 5 cm wide internal cavity and the floor systems
were identified as ‘‘laterizio’’ found commonly in Italy at that time of construction. The
following sub-sections address the primary details and assumptions associated with the
component data inventory selected and how inputs are created for the toolbox to generate
SLFs.

Building components and cost distributions

The second story (intermediate story) of the case study building was selected here for the
demonstrative analysis comparing SLF generation, assuming both independence and cor-
relation of some components. However, the toolbox was also applied to generate SLFs for
the whole structure and loss assessment was carried out to validate the results with respect
to a component-based approach. Cost distributions for the structural and non-structural
components and detailed component inventory with quantities were adopted from
O’Reilly et al. (2018). Tables 1 and 2 summarize the mean structural and non-structural
component quantities, respectively. The tables identify the type of the component, the
demand parameter that the component is sensitive to, the unit for measuring the quantity
of the component and the quantities of each type of component. For structural compo-
nents, PSD is assumed as the EDP, while for non-structural components, the main EDPs
are both PSD and PFA.

For the sake of brevity, only PFA- and PSD-sensitive components were analyzed. Only
the bookcases were defined as sensitive to the PFV demand parameter (O’Reilly et al.,
2018) so it was decided to omit it from this study and reimplement the component-based
approach without it. Moreover, PFA-sensitive components were grouped depending on
the location within a story and to which EDP they were sensitive. That is, components such

Figure 9. Main geometrical and structural properties of the case study building adapted from O’Reilly
et al. (2019).
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as piping systems located in a story i but sensitive to the EDP of the above story were tied
to the PFA of story i+ 1, while components such as computers located in the story i that
are not sensitive to the above EDP were tied to the PFA of story i, as described previously.

Component fragility and consequence functions

Creating EDP–DV functions requires the definition of fragility and consequence functions
for all components considered. Tables 3 and 4 provide the damage descriptions, the sources
for the function definitions, and the fragility function parameters for non-structural and
structural components, respectively. For the RC structural components, fragility functions
were adopted from the available literature (Cardone, 2016; Cardone and Perrone, 2015).
For the non-structural components, the fragility functions were adopted from Sassun et al.
(2016) for the masonry infills, while the remaining component fragility functions were
adopted from FEMA P-58-1 (2012a) and the components were assumed as PFA-sensitive.

For some non-structural components, specific fragility functions were not available,
hence O’Reilly et al. (2018) assumed that the damage to, for example, doors, windows,
desks, or chairs, was directly correlated to the collapse DS of the internal infill walls (i.e.
DS4). The assumption was that the dependent components are generally either placed
within or adjacent to the causation component (i.e. the internal infill walls in this particular
scenario). This sort of indirect fix is also an example of the kind of situations that can be
dealt with appropriate correlation models. The last column of Tables 3 and 4 defines the
mean repair costs as a function of the quantity of components and associated with the DS
of each component within the structural and non-structural component inventory, respec-
tively. As per O’Reilly et al. (2018), repair costs were defined assuming a normal distribu-
tion with coefficient of variation equation to 0.1. A full spatial correlation was assumed
among the components of the same type within the same story.

In other words, if a given DS of an exterior beam–column joint is recorded, the assump-
tion is that the repair cost is the summation of the repair costs of all exterior beam–column
joints. However, in practice, it is unlikely that every single component of the same type will
be damaged identically within the story for the given level of EDP. For a more realistic
evaluation, a scaling factor smaller than 1.0 can be applied to reduce the costs through

Table 1. Mean quantities for the damageable structural components of the case study school building in
the longitudinal direction (quantities for the transverse direction listed in parenthesis)

ID Component Demand
parameter

Unit Quantity
per story

Story 1 Story 2 Story 3

A101 Exterior beam–column
joints (end-hooks)

PSD (%) per unit 20 (26) 20 (26) 20 (26)

A104 Interior beam–column
joints (weak columns)

23 (15) 23 (15) 22 (14)

A110 Ductile weak
columns (lapped)

44 44 44

A121 Exterior masonry
infill (with windows)

per m2 454.5
(127.77)

454.5
(127.77)

447.4
(125.8)

PSD: peak story drift.
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Table 3. Fragility function parameters and repair costs for non-structural components of the second
story

ID Damage states (DSs) Source Fragility function parameters Mean repair
cost e

Median (% for
PSD, g for

PFA)

Dispersion

A123
DS1 light cracking

Cardone and
Perrone (2015)

0.15 0.50 62
DS2 extensive cracking 0.40 0.50 117
DS3 collapse 1.00 0.40 234

A200

DS1 non-structural damage
FEMA P-58-3

(2012b)

0.50 0.60 683
DS2 structural damage 1.70 0.60 5868
DS3 loss of live load
capacity

2.80 0.45 36399

C100

DS1 operational

Sassun et al.
(2016)

0.18 0.52 35
DS2 damage limitation 0.46 0.54 62
DS3 significant damage 1.05 0.40 124
DS4 near collapse limit state 1.88 0.38 124

C200

DS1 operational 0.18 0.52 62
DS2 damage limitation 0.46 0.54 117
DS3 significant damage 1.05 0.40 234
DS4 near collapse limit state 1.88 0.38 234

C300 DS1 damaged
O’Reilly et al.

(2018)

1.88 0.38 754
C400 DS1 damaged 1.88 0.38 347
C500 DS1 damaged 1.88 0.38 191
C600 DS1 damaged 1.88 0.38 24

E100 DS1 falls, does not function

FEMA P-58-3
(2012b)

0.80 0.40 1035

E1000

DS1 5% of tiles dislodge
and fall

0.55 0.40 49

DS2 30% of tiles dislodge
and fall

1.00 0.40 69

DS3 total ceiling collapse 1.50 0.40 99

E110 DS1 damaged, inoperative 0.69 0.40 5569

E200

DS1 disassembly of rod
system at connections with
horizontal light fixture, low
cycle fatigue failure of the
threaded rod, pull-out
of rods from ceiling assembly

1.00 0.40 583

E300 DS1 small leakage of joints 0.55 0.40 307
E400 DS2 large leakage w/ major repair 1.10 0.40 2302

E600

DS1 falls, does not function

0.80 0.40 297
E700 0.80 0.40 2162
E800 0.40 0.40 1913
E900 0.60 0.40 1627

PSD: peak story drift; PFA: peak floor acceleration; FEMA: Federal Emergency Management Agency.
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engineering judgment to gauge what fraction of the total will actually be damaged, which
may be applied within the toolbox, if desired.

Correlated components

Consideration was given here for possible correlations among DSs of different compo-
nents in the considered case study school building. Doors, windows, desks, and chairs
were already tied to the collapse DS of the infill walls. However, for demonstration pur-
poses, logical correlations based on engineering judgment were assigned here among other
components within the same EDP-sensitive group. In other words, no correlation was con-
sidered between PFA- and PSD-sensitive components; however, correlation among PSD-
sensitive structural and non-structural components was considered. The description of the
damage of the causation component, as well as its effect on the correlated component, is
provided in Table 5.

It is important to note that, specifically for the case study example, the repair action
cost of demolition of partitions and their further restorations is included within the conse-
quence function of the causation component (i.e. there might be a possible double count-
ing involved inherently). However, within the context of this study, no action was taken to
avoid double counting as the repair cost source data were not available to sufficiently seg-
regate and avoid it. To avoid compromising the accuracy of results of future analyses, it is
advised to add correlations of components with proper care in the computation of repair
costs to avoid double counting.

Table 4. Fragility function parameters and repair costs for structural components of the second story

ID Damage
states
(DSs)

Source Fragility function parameters Mean repair
cost

Median
(% for PSD,
g for PFA)

Dispersion

A101 DS1 light
cracking

Cardone
(2016)

0.75 0.40 1284

1.25 0.40 2155
2.00 0.40 2895

A104 DS2 concrete
spalling

0.65 0.40 1497

1.75 0.35 2574
3.00 0.30 4041

A110 DS3 concrete
crushing

0.75 0.40 882

1.75 0.35 1388
3.00 0.35 1747

A121 DS1 light cracking Cardone and
Perrone (2015)

0.10 0.50 62

DS2 extensive
cracking

0.30 0.50 117

DS3 corner crushing 0.75 0.40 234
DS4 collapse 1.75 0.35 234

PSD: peak story drift; PFA: peak floor acceleration.
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Derivation of SLFs using the toolbox

The framework was initially applied for a comparative analysis between a scenario where
no correlation was assumed among different components’ DSs and a scenario where the
correlation was assumed. For that purpose, the toolbox was applied at the second story of
the building.

Estimating SLFs assuming uncorrelated components

The toolbox was initially applied to the second story of the school building assuming no
correlation among the DSs of the components. SLFs were estimated using both regression
Equations 4 and 5, the parameters of which are provided in Table 6. The curves are quite
similar as illustrated in Figure 10. In particular, Figure 10a shows the loss curves for struc-
tural components of the intermediate story. Regardless of the regression equation being
used, the losses start accumulating at low values of PSD, which is particularly due to low
capacities of interior and exterior infills (Table 4). In turn, losses of PSD-sensitivity non-
structural components are given in Figure 10b and, as is seen, the losses are almost twice

Table 5. Example correlation between components of the case study school building examined

Causation
component ID

Damage
description
of causation
component

Dependent
component ID

Effect on the
dependent
component

DS of a
dependent
component

A101 DS2 concrete
spalling

A121 Demolition of exterior
infills, as necessary

DS3

A104 A123 Demolition of interior
partitions, as necessary

A104 C100
A104 C200
A101 A200 Local cracking, localized

spalling, and yielding
DS1

A104 DS3 concrete
crushing

C300
C400
C500
C600

Damaged, to be replaced DS1

DS: damage state.

Table 6. Regression parameters for both equations fitted for the intermediate story SLF of the case
study school building

Performance group Equation 4—Weibull Equation 5—Papadopoulos et al. (2019)

a b g a b g d e

PSD S 1.00 1.26 1.14 1.38 2.15 1.38 2.16 989.71
PSD NS 1.00 1.65 1.43 1.66 2.88 1.66 2.89 606.70
PFA NS 2.47 0.79 1.94 2.47 0.79 2.47 0.79 340.54

PSD: peak story drift; S: sensitive; NS: non-structural; PFA: peak floor acceleration.
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as low than the ones associated with the structural components for this particular scenario.
Finally, Figure 10c provides the losses associated with non-structural contents.

The regression functions were used to fit the fractiles of the distributions and the accu-
racy of the regression was then gauged through the estimation of maximum, errormax, and
cumulative, errorcum, relative regression errors, summarized in Table 7. The results for
Equation 4 indicate that, even though a smaller maximum relative error was attained for
PFA-sensitive non-structural components, the cumulative relative error is much higher,
when compared to the errors of other performance groups, which indicates that, in gen-
eral, the regression performed worse for the whole data. Nevertheless, Equation 5 required
higher computational time, due to more coefficients involved in the fitting process.

Estimating SLFs assuming correlated components

The toolbox was also applied assuming component correlations. Figure 11a depicts the
SLFs of PSD-sensitive components at the intermediate story of the case study school build-
ing following Equation 4.

For this particular application, the consideration of correlated components did not
impact the loss in a significant manner when compared with the independency

(c)(a) (b)

Figure 10. Story loss functions for the case study school building intermediate (second) story level and
second floor (Equations 4 and 5). (a) PSD-sensitive structural components, (b) PSD-sensitive non-
structural components and (c) PFA-sensitive non-structural components.

Table 7. Accuracy metrics of regression analysis

Performance group Equation 4—Weibull Equation 5—Papadopoulos et al. (2019)

errormax (%) errorcum (%) errormax (%) errorcum (%)

PSD S 5.0 0.1 3.0 0.1
PSD NS 4.5 0.1 5.0 0.1
PFA NS 2.9 4.9 0.7 1.5

PSD: peak story drift; S: sensitive; NS: non-structural; PFA: peak floor acceleration.
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assumption, although some increase in vulnerability was noted. This may be attributed to
the fragility functions of the components (Figure 11b), where no notable overlap is
observed between the fragility function of the causation and dependent component. In
addition, the dependent component seems to have less capacity when compared to the
causation component, meaning that, at a given value of EDP, the dependent component
will likely be already damaged, hence, the dependency on the DS of another component
will not be very evident. The greater the overlap, the higher the probability, hence the
expected loss, will be, as similarly outlined in Ramirez and Miranda (2009). The example
illustrated here may be modified to further pronounce the influence of the correlation on
the SLFs by modifying the fragility parameters, but this was deemed a supplementary
exercise that is not critical for the scope of the work presented.

Comparison between FEMA P-58 component-based and SLF-based
loss assessment

Initially, SLFs were derived based on the component data provided in Tables 1 and 2. No
correlation among component DSs was considered. For the PSD-sensitive components,
the complete set of three SLFs were derived, corresponding to each of the three stories of
the building. For PFA-sensitive components, loss functions for four floors were derived,
based on whether the component was sensitive to the PFA of the above floor or the floor
upon which it is placed. In addition, PSD-sensitive components were subdivided into sepa-
rate SLFs based on their orientation (Figure 12). The PACT software (FEMA P-58-3,
2012b) was utilized to conduct the component-based loss estimation, where a total of 200
realizations were used per intensity level and the non-directional conversion factor was
assumed to be 1.2.

Apart from record-to-record (RTR) variability and in contrast to the original assess-
ment by O’Reilly et al. (2018), no epistemic uncertainty related to the numerical modeling
parameters was considered for simplicity. Consequently, the component-based loss assess-
ment described herein yielded slightly lower loss values with respect to the original study.
Several methods are noted when accounting also for modeling uncertainty. One way is to
generate demand results from one single deterministic model (the best representation of
the building) using many records and increase the variability to include the effect of

(a) (b)

Figure 11. (a) SLFs for the case study school building intermediate story level: PSD-sensitive structural
and non-structural components; (b) fragility functions of interdependent components.
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modeling uncertainty. Correlations, medians, and dispersions among the distributions of
EDPs at each floor are found and resampled, with the same median but an increased dis-
persion, accounting for modeling uncertainty. For the specific case study RC frame build-
ing, empirical values of modeling uncertainty may be adopted from O’Reilly and Sullivan
(2018), for example. Alternatively, different numerical model realizations can be carried
out (e.g. different reinforcement values, concrete strength, backbone parameters, etc.),
after which nonlinear response-history analyses (NRHA) demands of all models under
many records are used to directly account for the modeling uncertainty.

Finally, performance grouping was applied and Equation 5 was used to carry out
regression to obtain the SLFs. Probabilistic seismic hazard analysis (PSHA) was per-
formed in O’Reilly et al. (2018) and hazard-consistent ground motion record sets were
selected for the site location (the city of Ancona). Figure 13 illustrates the hazard curve
for the selected case study building location. The intensity measure (IM) selected was the
spectral acceleration, Sa(T*), at a conditioning period, T*. Since, the building possesses
principal modes of vibration in two orthogonal directions, following a suggestion of
FEMA P-58-1 (2012a), a T* of 0.5 s equaling the arithmetic mean of the two orthogonal
modal periods was selected. NRHA were conducted and the results were used to conduct
loss assessment using the PACT software for a component-based approach and using the
SLFs generated via the proposed toolbox.

Loss assessment approach

The approach proposed by Ramirez and Miranda (2012) was used herein to perform SLF-
based loss assessment. The approach takes residual deformations into account to compute

Figure 12. Component group and story loss function identification.
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the probability of the building to be demolished after a seismic event. The economic loss
condition on the ground motion intensity is computed as the summation of the following
terms: losses due to the building collapse; repair costs due to the building’s components
being damaged; and losses resulting from the demolition of the building, if it has experi-
enced excessive residual drifts.

The expected total economic loss is the sum of three mutually exclusive, collectively
exhaustive events, conditioned on a ground motion IM, and is given by Equation 8:

E LT jIM½ �= E LT jNC \ R, IM½ �P NC \ RjIMð Þ
+ E LT jNC \ D½ �P NC \ DjIMð Þ+ E LT jC½ �P CjIMð Þ

ð8Þ

where E[LT|NC\R, IM] is the expected total loss in the building given no collapse and the
components are repaired given the ground motion IM, which is the quantity output from
the SLFs; E[LT|NC\D] is the expected loss given no collapse but the building is demol-
ished, and E[LT|C] is the expected loss when the building has collapsed. The weights in
Equation 8 are described as follows: P(NC\R, IM) is the probability of the building not
collapsing but being repaired given the ground motion IM; P(NC\D|IM) is the probability
of the building not collapsing but being demolished due to excessive residual drifts given
the ground motion IM, and P(C|IM) is the probability of the building collapsing given the
ground motion IM. Equation 8 can be rewritten as Equation 9:

E LT jIM½ �= E LT jNC \ R, IM½ �P RjNC, IMð ÞP NCjIMð Þ
+ E LT jNC \ D½ �P DjNC, IMð ÞP NCjIMð Þ+ E LT jC½ �P CjIMð Þ

ð9Þ

where P(R|NC, IM) and P(NC|IM) are the probabilities that the building will be repaired
given no collapse, and that the building did not collapse, respectively, given the ground
motion IM; P(D|NC, IM) is the probability of the building to be demolished, given the
ground motion IM. The probability of demolishing the building given no collapse at a

Figure 13. Hazard curve for the site considered in Ancona, Italy.
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ground motion IM is computed as a function of residual PSD (RPSD) following the rec-
ommendations of FEMA P-58-1 (2012a). For the case study building, P(D|RPSD) was
assumed to be lognormally distributed with a median of 0.015 and a logarithmic standard
deviation of 0.3 (Ramirez and Miranda, 2012).

Assessment results

Loss assessment was carried out based on the SLFs developed using the proposed toolbox.
Similar to the component-based approach utilized by O’Reilly et al. (2018), a 60% thresh-
old was set during the loss assessment, beyond which the total replacement cost of ã ˜

3,929,937 was assumed for the building. The EAL was computed for the case study build-
ing by integrating the vulnerability curve, expressed in terms of expected direct economic
loss as a function of IM, with the site hazard curve defined according to Equation 10:

EAL =

Z
E LT jIM½ � dl

dIM

����
����dIM ð10Þ

where dl/dIM is the mean annual frequency of the ground motion IM. Given the already
identified expected total loss via Equation 9, the EAL disaggregated by cost type, along
with the vulnerability curve, is presented in Figure 14. The EAL computed utilizing SLFs
was 0.12%, which is slightly higher when compared to the one computed via the FEMA
P-58 component-based approach, which was 0.11%. As observed in Figure 14a, the main
contribution to the EAL difference comes from the non-structural performance group.
Even though the vulnerability curves are quite similar (Figure 14a), at lower intensity lev-
els, differences can be observed, which are predominantly due to the difficulty in ensuring
exact fitting of the regression function (Equation 5) in capturing the costs associated with
low IM levels regarding non-structural repair cost contributions, resulting in an inevitable
EAL difference between the two approaches.

(a) (b)

Figure 14. (a) Vulnerability curves and (b) expected annual loss ratio showing the breakdown between
different contributors in a comparative assessment between an SLF-based and component-based
approach.
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Finally, Figure 15 provides the relative contributions to the vulnerability curves as a
function of the return period. As observed, the main contributors at low hazard levels (i.e.
low return period) are the non-structural and structural repair costs. This reinforces the
observation that structural repair cost contributions are lower in the component-based
approach in comparison to the SLF-based approach. With increasing return period, the
repair cost due to damage to structural components reduces, while the repair cost due to
damage to non-structural components remains relatively stable. On the contrary, the con-
tribution from collapse and demolition to the expected loss ratio (ELR) starts increasing,
however, remains relatively low, compared to repair costs. While it is not possible to com-
pare these losses to real observations for the considered case study building, Del Vecchio
et al. (2020) presented actual repair costs of RC residential buildings damaged by the 2009
earthquake in L’Aquila, Italy that can provide some useful comparison. In that study,
around 90% of the total replacement cost was attributed to the non-structural compo-
nents, while structural components averaged around 3%–10%. These differ from the
respective contributions derived from both component-based and SLF-based assessment
methods employed, which are around 38% and 62% at low return periods for structural
and non-structural components, respectively. The main reason for this difference could be
attributed to exterior masonry infill panels, which contribute notably to the losses, and
were classified as structural components within this study while considered a non-structural
element by Del Vecchio et al. (2020) This is not deemed a major concern, as it depends on
the practitioner’s choice for those functions when carrying out loss assessment. The focus
of the present study, though, is the comparison of loss outputs between SLF-based and
component-based loss assessment frameworks, which indicates how the SLFs produced
using the proposed toolbox are capable of providing component-based-quality predictions
of loss that would be obtained with more conventional software such as PACT.

Summary and conclusion

Given the lack of available tools to develop SLFs to fit any user’s own specific needs, this
article aimed to fill the gap by introducing an SLF generation toolbox for seismic design
and assessment of buildings. This was described with step-by-step implementation and
was validated through its application to a case study school building in a comparative

(a) (b)

Figure 15. Relative contribution to expected loss with respect to increasing return period for an (a)
SLF-based approach and (b) component-based approach. As reference points, the 100-, 475-, and 2475-
year return periods have been annotated on each plot.
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study with the more rigorous component-based loss assessment described in FEMA P-58.
In addition, the toolbox was applied to a single story, with the goal to compare the effects
of assumptions where component DSs were considered independent and where the depen-
dency of DSs of different components was assumed. The main observations from this
study are as follows:

� The toolbox is capable of accounting for component correlation and can avoid the
problem of double counting of repair costs that is sometimes encountered in prac-
tice. The toolbox was applied to a single story to investigate how the consideration
of component dependency and interaction impacts in the observed vulnerability
when compared to the independency assumption.

� SLFs were developed for the entire case study school building accounting for the
response in both directions and a subsequent loss assessment was carried out.
Results were compared to a component-based loss assessment approach with a
good match in EAL between the two approaches.

� This close matching of the SLF-based loss estimates to the detailed FEMA P-58
component-based loss was also observed in the distribution of the losses among per-
formance groups per intensity. This comparison highlights the validity of the devel-
oped tool and its accurate applicability for the intended scopes initially outlined

� In addition to typical objective of performing loss assessment on existing buildings,
SLFs could act as an important tool for new designs within novel risk-based design
approaches. Simplified relationships between expected losses and structural
demands (i.e. SLFs) could be integrated and used to when designing new structures
to limit the potential for excessive monetary losses due to building damage, as
described in O’Reilly and Calvi (2019), for example.

While the developments outlined in this work have shown an ease of SLF development
via the proposed toolbox and illustrated its accuracy with respect to more robust
approaches to loss estimation, some future extension may be made. These include the con-
sideration of interactions between components physically located at different stories of a
building or associated with different performance groups. A tool for quick manipulation
and browsing of component data may also be foreseen to allow the user to add or remove
components and visualize all existing components. In addition, the toolbox currently oper-
ates on only two types of distributions (i.e. normal and lognormal). Future extensions
could foresee the possibility of including other, such as truncated distributions or multi-
modal distributions, that would add flexibility to the toolbox. These possible additional
features would be possible to implement, considering the object-oriented programming
used to develop the SLF generation toolbox structured through modular class definitions
in Python.
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