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A B S T R A C T

This paper presents an application of artificial neural networks (ANN) to ground motion modelling. We focused
on developing a generalised ground motion model (GGMM) incorporating several seismic intensity measure (IM)
types and their inter-IM correlation. These range from classical IMs, such as peak ground acceleration/velocity/
displacement, spectral acceleration, and significant duration, to more advanced IMs recently shown to be better
descriptors of structural performa nce, such as average spectral acceleration and filtered incremental velocity.
Additionally, three different horizontal component definitions were included for the spectral acceleration-based
IMs. A total of nine input ground motion causal parameters are required to use the GGMM developed, based on
ground motion records from the NGA-West2 database. ANN was used to perform the regression, which differs
from the approaches used in many existing ground motion models (GMMs), and gives the possibility to regress all
IMs simultaneously in one model. A mixed-effects regression approach was adopted for the regression and the
quantification of the inter- and intra-event variability of the GGMM estimation. The correlations between the IMs
were also quantified and briefly presented here, which allows for a more refined prediction of seismic shaking
and a unified treatment of prediction and IM correlations. This will allow more advanced record selection for
non-linear dynamic analyses to be performed, which can consider several facets of ground shaking currently
overlooked in many works. We evaluated the performance of the developed GGMM using several metrics and
compared it to various existing GMMs developed with either the classical approach or machine learning
methods. The results show that the proposed GGMM exhibits very good predictions, especially considering the
wide range of IMs tackled. Lastly, this methodology has the flexibility of being able to add more IMs or horizontal
component definitions seamlessly.

1. Introduction

Ground motion models (GMMs) are an essential part of seismic
hazard analyses and form the basis for seismic risk assessments, shake
maps, loss estimation, seismic design of structures, and more, which
comprise both fields of earthquake engineering and seismology. GMMs
estimate the distribution of expected ground motion intensity and its
associated uncertainty, given a set of causal parameters (e.g., magni-
tude, source-to-site distance, etc.) at a given site location. Many different
intensity measures (IMs) can be used to characterise the ground motion
shaking intensity at the site of interest. For example, several past studies
[1–5] have examined IMs for different structural typologies to identify
the benefits and drawbacks of each in various contexts. There is also a
growing interest in using cumulative intensity-based IMs (e.g.,

significant duration) together with peak response amplitude-based IMs
(e.g., spectral acceleration), which has sparked the development of a
plethora of GMMs to estimate different types of IMs over the years [6].
However, these GMMs (e.g., Ref. [7–10]) predict the IMs independently,
with each available GMM being based on a different ground motion
database (or at least applying different filtering criteria) and different
regression models for the fit. This leads to some degree of heterogeneity,
which can be mitigated by developing a generalised ground motion
model (GGMM) to estimate different types of IMs collectively [11].
Using independent GMMs to estimate assorted ground motion IMs for
the same earthquake scenario can possibly introduce unwanted bias,
since they use different regression datasets, which is then propagated
into the seismic analysis and risk assessment results. It is important to
note that more consistent correlation models can be produced for the set
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of output IMs since they are estimated using the same GGMM and,
therefore, the same filtered ground motion database, which mitigates
these aforementioned potential issues.

GMMs can be divided into two types: parametric and non-
parametric. Traditionally, parametric models are employed, where
fixed functional forms are used to fit a set of coefficients based on
empirical data (e.g., Refs. [8,12–15]). These predefined functional forms
are derived by observing the ground motion characteristics, like
amplification, attenuation and faulting mechanism, leading to increas-
ingly complex functional forms when more effects are considered.
Furthermore, these functional forms also differ depending on the IM
being estimated, meaning that specific functional forms work better for
specific IMs ([16]; section 4.4). Another potential drawback of para-
metric models is that overly simplistic functional forms may possess
limited capability to accurately estimate complex ground motion char-
acteristics. Nonetheless, it should also be stated that parametric GMMs
have the advantage of allowing the analyst to maintain some control
over the analytical functional forms adopted to ensure that their trends
are indeed reflective of the actual physics of the seismological phe-
nomena, as we currently understand them. This is especially helpful
where only limited data are available, however with the enriched
NGA-West2 dataset researchers can easily opt for machine-learning
algorithms.

Meanwhile, researchers have recently been exploring the potential of
non-parametric models, where data-driven regression techniques are
employed to develop GMMs [11,17]. They have the advantage (which
may also be viewed as a disadvantage) of not requiring any predefined
analytical equations as input. This stemmed from recent applications of
advanced non-parametric models, such as machine learning algorithms,
artificial neural networks (ANN), fuzzy logic, etc., in the field of earth-
quake engineering. There are many alternative machine learning algo-
rithms that were applied in ground motion modelling through the years,
such as Support Vector Machine, genetic programming, Gene expression
Programming, ensemble decision tree models (e.g., random forest), and
sometimes even combination of different machine learning algorithms.
For the development of this model, the ANN algorithm was preferred
over the aforementioned methods, since the modeller has more control
over the model, by tuning the model parameters and structure. The more
recent XGBoost algorithm [18] was also tried, but dropped primarily
due to the difficulty in adjusting the algorithm to prevent overfitting for
this kind of problem, and the difficulty to understand and interpret [19].
The overfitting problem was subtle during the fixed-effects procedure,
but it was very amplified in the mixed-effects. Additionally, the eventual
ANN model (see “Code availability” section) is much easier and faster to
load and use. It is acknowledged, however, that relying purely on
data-driven approaches is not a perfect solution, as these models work
well only where data are available. In ground motion modelling for
engineering use, we are typically interested in strong shaking that can
potentially cause damage to engineered structures, which requires data
from large-magnitude earthquakes, which are less frequent. Hence,
there is a danger that inaccuracies may arise when using these
data-driven GMMs to predict intensities that are not well recorded, or
even beyond the fitting range. It is here that robust verification is
needed, and, in some cases, the physical meaning of the parametric
functional forms may be advantageous.

ANNs are generally considered semi-parametric models, because
they combine aspects of both parametric and non-parametric models.
The parametric aspect is that they have a fixed set of parameters
(weights and biases) determined by the network architecture. The non-
parametric aspect is that they are highly flexible and capable of
approximating complex, non-linear functions. For the case of this study,
the ANN is labelled as non-parametric since the parameters were chosen
through hyperparameter tuning methods, and they were not fixed.
However, it should still be noted that it is still not a non-parametric
model in the strictest sense. Derras et al. [20] used ANN to develop a
GMM for Europe, in which a local search algorithm named the

quasi-Newton back propagation technique was used to calculate the
unknown coefficients. In a subsequent study, Derras et al. [21] used the
same technique on recordings from the NGA-West2 database to model
the variability with respect to site conditions. However, that model has
the pitfall of getting trapped into local minima and also does not account
for the fault mechanism, which is known to have a notable effect on
ground motion modelling.

Therefore, in this study, a novel GGMM was developed using a robust
ANN algorithm that can be used to estimate a wide variety of IMs. Nine
input parameters were chosen to be included in this model to capture as
many ground motion characteristics as possible to predict many IMs
from the same model. Among them, the most popular are the moment
magnitude, Mw, the rupture distance, Rrup, the Joyner-Boore distance,
Rjb, the site shear wave velocity, Vs,30, and the style of faulting, SOF. The
output variables are a mixture of traditional and next-generation IMs,
which will be explained in further detail in subsequent sections. This is
one of the main contributions of the proposed model: the ability to es-
timate next-generation IMs more accurately than the scarcely available
and simplistic models in the literature. The results and predictions of the
proposed GGMM are then presented and compared against the afore-
mentioned recent and well-established GMMs available in the literature.
Additionally, the GGMM was trained for three different horizontal
component definitions of spectral acceleration, namely, the geometric
mean, RotD50 and RotD100 definitions [22]. Therefore, the user has the
option of choosing their preferred horizontal component definition or
estimating the ratios between them for specific seismic hazard
conditions.

The following sections describe the ground motion database utilised
and the filtering criteria, the predictor and response features used in the
ANN model, the model architecture and methodology employed, fol-
lowed by an evaluation of the model’s performance using different
performance metrics, visual representation of the model predictions and
spectra, while comparing with other relevant GMMs, and a brief
description on the imminent correlation models stemmed from this
study. The overall structure of this paper is illustrated in Fig. 1.

2. Strong motion database and filtering

To utilise ANN to fit a GGMM, a dataset of ground motion recordings
was first required. The NGA-West2 database [23], containing
bi-directional ground motion acceleration records with their respective

Fig. 1. Flowchart of the paper.
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site details, and source information, was adopted. The database was
filtered to remove some of the records that may be deemed unsuitable
for general use based on the criteria given below, which indirectly form
the recommended usage limitations of the GGMM developed herein:

• Only ground motion records from earthquakes with Mw ≥ 4.5 were
utilised. Earthquakes of lower magnitude were omitted as they were
assumed to not be strong enough to induce significant non-linear
deformations or structural collapse in engineered buildings without
a significant amplitude scaling;

• Recordings with Rrup greater than 300 km were discarded. It is worth
noting that a few researchers have the source-to-site distance limit to
be magnitude-dependent [24]. This intends to minimise the potential
sampling bias, which can occur at large distances and/or low mag-
nitudes, where ground motions are generally weak, and instruments
may only be triggered by stronger-than-average ground motions.
However, this bias is considered to be insignificant and therefore, no
further actions were taken in this regard;

• Recordings from instruments located on the free field, below the
surface, or in the first storey of low-rise structures (fewer than four
storeys) were utilised. This was based on the Geomatrix 1st letter
code of the NGA-West2 flat-file;

• Events with a hypocentral depth greater than 20 km were discarded;
• Events recorded on sites with higher than 1300 m/s of mean shear

wave velocities in the upper 30 m, Vs,30, were discarded;
• Recordings from all event mechanisms (i.e., strike-slip, normal,

reverse, reverse-oblique, and normal-oblique) from active shallow
crustal tectonic environments were included;

• Only records whose minimum useable frequency of both components
was less than 0.25 Hz were considered;

• Earthquakes with Mw < 5.5 and fewer than five recordings were
discarded. Earthquakes with 5.5 ≤ Mw < 6.5 and fewer than three
recordings were discarded. This was because those earthquakes
could be considered to have insufficient number of recordings, and
therefore unreliably recorded;

• Recordings were considered only if both horizontal components
were available. This was necessary to characterise the different
horizontal components of shaking;

• Recordings from aftershocks were excluded since most seismic haz-
ard analyses are performed based on a (Poissonian) recurrence of
mainshocks. Therefore, including aftershocks in the regression
dataset of the GGMM could introduce an unwanted bias. In this
study, a recording is classified as an aftershock if it is defined as a
‘Class 2’ event with centroid Joyner-Boore distance, CRJB < 10 km
according to the criteria given in Wooddell and Abrahamson [25],
although other classification criteria could have been used.

Based on the above filtering criteria, the final ground motion data-
base included 4135 recordings from 102 earthquakes. The earthquakes
were classified into five SOFs, including strike-slip (58 earthquakes and
1819 recordings), normal (9 earthquakes and 74 recordings), normal
oblique (4 earthquakes and 247 recordings), reverse (21 earthquakes

and 1077 recordings) and reverse oblique (10 earthquakes and 918 re-
cordings). Fig. 2 displays the Mw, Rrup and Vs,30 distributions of the
filtered database. Additionally, the depth-to-shear wave velocity of 2.5
km/s, Z2.5, when missing for some ground motion recordings, was
estimated following the prediction equations of Kaklamanos et al. [26].

3. Predictor and response features

Before developing and training the ANN model, it is essential to
identify the predictor and response features. The informed selection of
predictor features is essential to the robustness and accuracy of the
subsequent modelling process. Within the scope of GMMs, past research
([16,27] - Section 4.5 [11]) has highlighted the substantial predictive
power of magnitude, M, and source-to-site distance, R, for most IMs of
engineering interest. In addition, several other causal parameters were
included to train the ANN models. The full list of predictor features
within this study are listed in Table 1, where the associated response
features are PGA, PGV, PGD Ds595, Ds575, Sa(T), FIV3(T), Saavg2(T),
Saavg3(T), which are described in detail below. Users must provide a
value for each of the predictor features shown in the first column and
can obtain predictions for any of the response features listed in the last
column, essentially making it a generalised GMM for the variety of IMs
that can be predicted. Also, the minimum and maximum values of each
parameter in the filtered database are listed. These values also reflect the
recommended usage limits of the model. We note that the GGMM con-
siders multiple depth-related predictor features, which is not necessarily
an issue and several models available in the OpenQuake library, for
example, follow a similar approach. The inclusion of three different
distance metrics may seem peculiar, but it was seen to produce more
accurate and reliable predictions, which is in line with the observations
of other researchers (e.g., Ref. [11,13]). It is worth noting that users
must also be aware that there may be physical limits to the input

Fig. 2. Mw and Rrup distribution of the filtered ground motion database used to fit the GGMM for (left) Vs,30 ≤ 760 m/s, and (right) Vs,30 > 760 m/s.

Table 1
List of predictor features required when using the GGMM.

Description Min
value

Max
value

Moment magnitude, Mw 4.5 7.9
Rupture distance, Rrup [km] 0.07 299.59
Hypocentral depth, Dhyp [km] 2.3 18.65
Time-averaged shear-wave velocity to 30 m depth, Vs,30

[m/s]
106.83 1269.78

Style of faulting, SOFa 0 4
Depth to the 2.5 km/s shear-wave velocity horizon (a.k.a.,

basin or sediment depth), Z2.5 [m]
0 7780

Depth to top of fault rupture, Ztor [km] 0 16.23
Joyner-Boore distance, Rjb [km] 0 299.44
Distance measured perpendicular to the fault strike from

the surface projection of the up-dip edge of the fault
plane, Rx [km]

− 297.13 292.39

a Encoding for the SOF is as follows: 0 for strike-slip, 1 for normal, 2 for
reverse, 3 for reverse-oblique, and 4 for normal-oblique.
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predictor features can take with respect to each other (e.g., Vs,30 and
Z2.5); hence, care is required when using such models.

Response features, or IMs, include the peak ground acceleration
(PGA), velocity (PGV), displacement (PGD), two definitions of signifi-
cant duration, Ds, given by Equation (1) and (22) definitions of Sa at
periods ranging from 0.01s to 5.0s, 14 definitions of two different def-
initions of average spectral acceleration, Saavg2(T) and Saavg3(T), at
periods ranging from 0.1s to 4.0s given by Equation (3) [28,29], 14
definitions of filtered incremental velocity, FIV3, at periods ranging
from 0.1s to 4.0s given by Equation (4) [30]. The equations and defi-
nitions of some of the output IMs are given in the following.

There are many ways to describe the duration of a strong ground
motion [31]; the two most common definitions are bracketed duration
and significant duration [8]. The scope here is limited to the significant
duration since it is often the preferred definition used in the literature
[32]. It is defined as follows:

Dsxy = ty − tx (1)

x=
100%

Ia

∫ tx

0
[a(t)]2dt (2)

where tx and ty are the time stamps on a Husid plot [33] at which x and y
per cent of the total Arias intensity, Ia, occurs (as defined in Eq. (16) for x
and similarly for y). a(t) stands for the acceleration time history. The
most common values of x and y adopted in the literature, included in this
study, are {x, y} = {5 %,75 %} and {x, y} = {5 %, 95 %}, subsequently
referred to as Ds575 and Ds595, respectively.

Average spectral acceleration, Saavg(T), has been shown in the
literature to be a better overall predictor of structural response, than the
classic IM of Sa(T) for the majority of structural typologies [3,4,34]. It
can be easily calculated from the geometric mean, which is also the
log-average, of a range of Sa(T) values as follows:

Saavg(T)=

(
∏N

i=1
Sa(ciT)

)1
N

(3)

where Sa(ciT) corresponds to the 5%-damped pseudo-acceleration
spectral value, ci is a factor ranging uniformly, N = 10 times, from 0.2
to 2.0 and 0.2 to 3.0 for Saavg2(T) and Saavg3(T), respectively. Previous
research has shown that this spacing scheme is more efficient than a
logarithmic one and that the difference between using 10 or 100 periods
is negligible, on average [35].

A novel IM, named FIV3, proposed by Ref. [30], has shown promising
results regarding its efficiency and sufficiency in characterising the
collapse performance of buildings. It is briefly summarised mathemati-
cally as follows:

FIV3=max
{
Vs,max 1 +Vs,max 2 +Vs,max 3,

⃒
⃒Vs,min 1 +Vs,min 2 +Vs,min 3

⃒
⃒
}

(4)

Vs(t)=
∫ t+αT

t
ügf (t)dt,∀t < tend − αT (5)

where Vs(t) is a series of incremental velocities (IVs) estimated using
time segments of αT, Vs,max1, Vs,max2, Vs,max3 are the first, second, and
third local largest IVs in Vs(t), respectively, and Vs,min1, Vs,min2, Vs,min3
are the first, second, and third local minimum IVs in Vs(t), respectively, T
is the period of interest, tend is the last instant of time of acceleration time
series, and ügf is the filtered acceleration time series using a second-order
Butterworth low-pass filter with a cut-off frequency, fc, equal to βf,
where β is a scalar controlling the fc/f ratio and f is 1/T. The parameters
α of 0.7 and β equal to T are based on Dávalos et al. [14]’s findings.

In addition to the IMs themselves, ground motions are usually
recorded in three orthogonal directions in space, so combining these
recorded directions into an IM with a specified horizontal component
definition is necessary. Several horizontal component definitions have

been used in the literature to quantify the intensity of a ground motion
on single-degree-of-freedom systems based on the two orthogonal hor-
izontal components, such as arbitrary component, maximum of the two,
average, square-root-of-sum-of squares, geometric mean, GMRotI50,
RotD50. Most modern GMMs use the RotD50 definition [22], as it is
considered to be the state-of-the-art horizontal component definition, at
least for spectral acceleration IMs, however, also other definitions may
be of interest in a seismic risk analysis. In this model, the RotD50,
RotD100 and geometric mean were adopted for Sa and Saavg; only the
RotD50 was adopted for PGA, PGV, and PGD; whereas for more
advanced IMs (i.e., FIV3) and other IMs (i.e., Ds575 and Ds595) only the
geometric mean definition was adopted.

4. Model architecture

4.1. Fixed-effects with artificial neural network

A feed-forward ANN was employed to predict the IMs outlined in
Section 3. ANN is a subset of deep learning composed of artificial neu-
rons inter-connecting an input layer, one or more hidden layers, and an
output layer [36]. Each neuron performs a simple computation,
receiving a signal, applying an activation function, and passing the
result through the hidden layers to the output layer, hence the term
feed-forward. While the neurons in the hidden layers process the infor-
mation, the neurons in the input layer transmit the input data, and the
neurons in the output layer provide the final outputs, or within the scope
of this study, the predictions of IMs of interest. Each connection has an
associated synaptic weight representing the strength of the connection.
Similarly, network neurons are associated with a bias term, which ad-
justs the point at which the neuron becomes significantly active or
inactive based on the total input received, thus influencing the neuron’s
overall activation behaviour. The synaptic weights of the connections,
along with the neurons’ biases, represent the neural network’s param-
eters, which are adjusted during the training process to optimise the
network’s performance. The synaptic weights are used as the multipliers
of the outputs of the previous layer, and the bias is a constant added to
the outputs before passing through the activation function. The training
is typically done through a technique called back-propagation, which
uses a gradient descent optimisation [37], where the network tries to
minimise the difference between its predictions and the actual target
values in the training dataset by adjusting its weights and biases. For a
detailed description of neural networks, readers are referred to Haykin

Fig. 3. Architecture of the ANN ground motion model.
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[38]. The schematics of the chosen ANN architecture are shown in Fig. 3,
and the general expression to predict each IM is as per Equation (6).

log10(IMr)= flinear

[

br +
∑150

h=1

Wh,r • ftanh

(

bh +
∑9

p=1
Wp,hXp

)]

(6)

where Xp is the predictor feature p (Table 1), Wp,h is the weight of the
connection between predictor neuron p and hidden neuron h, bh is the
bias of the hidden neuron h, Wh,r is the weight of the connection between
hidden neuron h and response neuron r, br is the bias of the response
neuron r (from 1 to 169), ftanh and flinear are the activation functions of
the hidden and response layers, respectively. It should be noted here that
the standard deviation term is not shown in equation (6), since the focus
here is the fixed-effects regression model itself. The treatment of
dispersion is covered in the next subsection.

The ANN training was performed in Python, using the open-source
TensorFlow library [39]. The step-by-step implementation, including
dataset processing, training of ANNs and generation of predictions, are
outlined here. Dataset feature processing and selection of ANN param-
eters and functions are described as follows:

• Predictor feature engineering: MinMax normalisation is adopted to
ensure that predictor features are on a similar scale and, hence, have
a comparable influence on the model’s learning process (e.g.,
magnitude ranges between Mw = 4.5–8, but soil properties can vary
between Vs,30 = 200–1200 m/s). This can improve the convergence
of the training process and make it less sensitive to the scale of
predictor features. Additionally, the initialisation of weights can be
more effective, which will facilitate faster convergence and prevent
gradients’ vanishing or exploding issues. The scaling was done using
a range of − 3 to 3 instead of 0 and 1, as this range was found to
increase the predictive power of this specific model architecture. For
what regards SOF, one-hot encoding was applied. A lognormal
transformation of the predictor features was also tried, but it was
seen through manual cross checking with the results of the model
that the MinMax normalisation worked better;

• Response (IMs) feature engineering: Similar to predictor features, the
response features are scaled to span similar ranges. A log10 trans-
formation is applied to the vector of IMs, as it is sometimes adopted
in GMMs in the literature, instead of the natural logarithm (e.g.,
Ref. [17,24,40,41]). The log10 transformation limits the response
parameter range more than a natural logarithm transformation, and
therefore, a more robust fit could be achieved (i.e., better perfor-
mance metrics);

• Number of hidden layers and neurons: A single hidden layer was
employed following a trial-and-error approach, demonstrating that
using just one hidden layer was adequate for making predictions. The
input layer consisted of 9 neurons, matching the number of predictor
features, while the output layer consisted of 169 neurons, corre-
sponding to the number of considered IMs. Concerning the number
of neurons in the hidden layer, 150 neurons were chosen, as it pro-
duced the model’s optimal predictive performance (considering the
chosen performance metrics and eventual model dispersion
described later). It was observed that using fewer or more neurons
led to either underfitting or overfitting, respectively;

• Activation functions: Calculates the output of a neuron. Given the
nature of this regression problem, softmax, tanh, and linear activation
functions were considered in the input, hidden and output layers,
respectively, based on the hyperparameter tuning described later.
The tanh proved to work better with the range of predictor features,
given the MinMax normalisation together with passing through the
softmax activation function. Furthermore, tanh in the hidden layer
introduces the necessary non-linearity, which enables the network to
learn complex patterns from the data. Additionally, linear activation
function was used for the output layer as it prevents the output
values from having an upper or lower limit and can also output

negative values to take care of the contradicting effects of some
predictor features on different response features;

• Optimisation algorithm and loss function: The loss function
employed for optimisation was the mean squared error (MSE) given
by Equation (7), and its minimisation was accomplished through the
use of the adaptive moment (ADAM) optimisation algorithm [42].
Additionally, the coefficient of determination, R2, given by Equation
(8) was used to determine how well the variation of response features
is explained by predictor features in a regression model, where yi is
the ith observed value, ŷ i is the ith predicted value, and y is the mean
value of n data points;

• Training and testing sets: Before model training, the filtered dataset
from Section 2 was randomly split into training and testing sets using
an 80:20 ratio.

MSE=
1
n
∑n

i=1
(yi − ŷi)

2 (7)

R2 =1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (8)

The next step of the implementation involves training the ANN. To
assess the model’s performance, a five-fold cross-validation [43] was
employed. The training set was randomly partitioned into five
equal-sized sets. Five separate ANNs were trained, each using four of the
subsets for training and the remaining fifth subset for model prediction
validation. The procedure ensures that each subset takes on the role of
the validation set for its respective training. The fixed-effect regression
metrics for cross-validation were computed as the average of the results
from five ANNs. Furthermore, Bayesian optimisation [44] was employed
to determine the optimal hyperparameters for the ANN regression
model. The objective within the context of this study was to minimise
the MSE of the fixed-effects regression by exploring a range of hyper-
parameters. A summary of the hyperparameters considered is provided
below:

• Batch size from 8 to 128: helps balance computational efficiency and
model performance. With smaller batch sizes, better model gener-
alisation can be achieved. However, it can be computationally
insufficient, as more updates are needed to process the entire dataset.
In contrast, larger batch sizes accelerate the training but can hinder
model generalisation. Hence, the model is more prone to overfitting;

• Training epochs from 50 to 200: during each epoch, the model passes
through all training samples and updates its parameters (weights and
biases) based on the loss incurred when making predictions. The
updates try to minimise the error and improve the model’s perfor-
mance. While the optimal number of training epochs can improve the
model’s ability to generalise, with the increasing number of epochs,
overfitting may incur. Therefore, early stopping was implemented as
a preventive measure against overfitting, which automatically halts
training if the model stops improving for 20 consecutive epochs;

• Optimisation algorithm: The following optimisation algorithms were
considered: ADAM; root mean square propagation (RMSprop); sto-
chastic gradient descent (SGD); adaptive gradient descent (Adagrad);
adaptive learning rate (Adadelta); a variation of ADAM (Adamax); a
combination of Nesterov accelerated gradient and Adam (Nadam);
follow the regularised leader (Ftrl);

• The learning rate of the optimisation algorithm from 0.5x10− 3 to
0.05: controls the step size during weight updates and influences the
convergence speed and stability of the model;

• The activation function of hidden layer: The following activation
functions were considered: linear; rectified linear unit (ReLU); leaky
ReLU; exponential linear unit (ELU); scaled ELU; softmax; hyperbolic
tangent (tanh).

The approach was utilised to comprehensively evaluate the model’s
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performance while mitigating the potential risks associated with over-
fitting (high variance) and underfitting (high bias). The hyper-
parameters that yielded the best model performance are as follows: tanh
and linear activation functions for the hidden and response layers,
respectively; learning rate of 1.04x10− 3; a batch size of 32; and 100
training epochs.

4.2. Mixed-effects regression

The functional form of the GGMM is given as:

log10IMi = fi(X, θ) + δbiτi + δwiϕi (9)

where log10IMi is the logarithm with base 10 of the ith IM; fi(X, θ) =
μlog10IMi|X,θ is the predicted mean output from the ANN model, taking as

input a set of causal features (e.g., Mw, Rrup, etc.), denoted as X; θ are the
‘calibrated coefficients’ of the ANN model (i.e., synaptic weights and
biases); δbi and δwi are the normalised inter- and intra-event (or be-
tween- and within-event) residuals of IMi, respectively; τi and ϕi are the
inter- and intra-event logarithmic standard deviations. Note that herein,
the normalised residuals are denoted with lowercase letters (i.e., δbi and
δwi) and the residuals before normalisation with uppercase letters (i.e.,
δBi and δWi). The main metric to evaluate the model’s performance is
the total standard deviation, σ. Most recent GMMs have the inter- and
intra-event standard deviation models, or just the inter-event standard
deviation models, to be magnitude-dependent [45,46]. However, for the
sake of simplicity and to not over-complicate this study, the dispersion
model was assumed to be magnitude-independent since also a few other
studies noticed only minor dependencies on Mw and only for Mw < 5.5
[13,47]. To calculate σ, one must first segregate the total residuals be-
tween inter- and intra-event residuals, which can be treated as normal
variables that ideally should follow a normal distribution with zero
mean and standard deviations τ and ϕ, respectively [48]. If the inter- and
intra-event residuals are assumed to be mutually independent, then the
total standard deviation can be calculated as the square root sum of their
variances, given in Equation (10).

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

τ2 + ϕ2
√

(10)

Taking advantage of this assumption and a better understanding of
these two different sources of uncertainty, Abrahamson and Youngs [49]
proposed a one-step mixed-effect regression algorithm, using the
maximum likelihood approach, to compute the variances τ2 and ϕ2. This
algorithm is an iterative procedure in which mixed-effects, variances,
and model parameters are computed successively. This procedure is now
widely applied for the development of GMMs and is hence adopted for
the ANN model development here. The adopted algorithm is based on
the procedure proposed by Abrahamson and Youngs [49], which is
similar to the one used in Derras et al. [20], and can be summarised as
follows:

1. Estimate the initial set of ANN model parameters (i.e. [W] and {b} in
Equation (6)), using a fixed-effect training procedure.

2. Estimate τ2 and ϕ2 from [W] and {b}, by maximising the log-
likelihood function as given in Abrahamson and Youngs [49], and
specifically their Equation (7).

3. Given [W], {b}, τ2 and ϕ2, estimate the random inter-event residuals,
δB, as given in Abrahamson and Youngs [49], and specifically their
Equation (10).

4. Estimate the new [W] and {b} using a fixed-effects training proced-
ure for (log10IM - δB).

5. Repeat steps 2, 3, and 4 until the termination criterion is satisfied.
The adopted termination criterion was 0.15 % in terms of the dif-
ference between two successive likelihood values.

5. Model performance

5.1. Performance metrics

The performance of the ANN model can be evaluated by comparing
the empirical (i.e., recorded) values of IMs with their corresponding
model estimations using various metrics. In this study, two of the most
common ones (i.e., MSE and R2) are reported, as described in Equations
(7) and (8), while acknowledging that there exist several other metrics
in the literature (e.g., ANOVA, LLH, and Akaike information criterion) to
test and evaluate a GMM’s performance. The resulting average MSE of
the (fixed-effects) model, determined through five-fold cross-validation
with the optimal parameters, obtained as described in Section 4.1, was
found to be 0.080 for the training set and 0.079 for the validation set,
showing an overall very low value, with the validation set giving a
slightly higher value, as anticipated. Finally, the model corresponding to
the optimal parameters, after passing through the mixed-effects
regression, was evaluated using the 20 % unseen testing set, and the
regression metrics MSE and R2 associated with each IM are reported in
Fig. 4. The eventual average MSE of all IMs were 0.078 for the training
set and 0.079 for the test set, again exhibiting high accuracy. It is
noteworthy that the average training and validation set MSE after cross-
validation with the optimal parameters have very close values to the
average training and validation set MSE after passing through the
mixed-effects regression, respectively, further validating the model’s
accuracy. From Fig. 4, it can be seen that the R2 of the testing set is at
times slightly higher or equal to that of the training set, which can be
expected but the overall comparison is nonetheless encouraging. At the
same time, both values are not excessively low, indicating that while the
model has high predictive power, it also avoids overfitting. In the case of
MSE, the testing set presents both lower and higher errors than the
training set, depending on the IM. For IMs with relatively high MSE, it is
the testing set that is higher than the training set. The inverse happens in
the case of IMs with low MSE, but to a lesser extent. Reasons for these
latter case may include situations where the training data were harder to
predict, or had inherently more dispersion that the testing data.
Generally, the MSE values are considered to be low, which is another
indicator of the model’s predictability, and allows the ANN model’s
performance to be deemed sufficient for general application.

5.2. Comparison with other GMMs

5.2.1. Traditional IMs
To evaluate the quality of GGMM’s estimations visually with respect

to the available data and other comparable GMMs available in the
literature, a few graphical representations were plotted and are
described below. To do this, different combinations of input causal pa-
rameters were used to illustrate relative trends with respect to other
causal parameters. Strike-slip rupture style was assumed, and the
average of the observed data was taken for the rest of the features
needed for this study and the compared models, except for Rjb whose
value was indirectly calculated from Rrup. Fig. 5 shows the magnitude
amplification of Sa(0.01s), Sa(0.1s), Sa(0.5s), and Sa(1.0s) for two
different rupture distance bins and are compared with the GMMs of
Campbell and Bozorgnia [13] (CB14), Dhanya and Raghukanth [17]
(DR18), and Fayaz et al. [11] (FXZ21). The horizontal component def-
initions for Sa of these models are RotD50 for CB14 and FXZ21 and
unspecified for DR18. The RotD50 definition of the proposed model is
used for the comparisons. These models are well-established models
based on either a classical approach to GMM fitting (i.e., CB14) or ma-
chine learning-based approaches (i.e., DR18 and FXZ21). These GMMs
were selected to provide a relative comparison but of course, many more
models could have been chosen here. The comparison was limited to
three to avoid overcrowding in the plots that would inhibit the
visualisation.

It can be seen that the estimated values of the proposed GGMM are
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generally close to the cloud mean, with a minor deviation in short dis-
tances (i.e., 0 km ≤ Rrup ≤ 50 km) in high magnitudes, which is mainly
because of the data sparsity. Also, minor deviation from the empirical
data is observed in longer distances (i.e., 50 km ≤ Rrup ≤ 100 km) for
moderate magnitudes (i.e., 6 ≤ Mw ≤ 7), again due to data sparsity. The
differences between the compared models and the proposed model are
more pronounced in the Sa values of longer periods. Generally, all of the
compared models give values close to each other and to the proposed
model, while also keeping the same trends, giving confidence to the
proposed model. For the same IM, the distance attenuation for two
different magnitude bins is shown in Fig. 6, along with the comparison
of the three previously mentioned models. The FXZ21 model is limited
to Rrup ≤ 100 km (and Rx ≥ 0 km) and is hence not plotted beyond that
limit. The estimations of this study capture well the trends of the cloud
mean, with the CB14 model also being very close. The other two models
are somewhat deviating from the observed mean in some sections of the
plot.

It is noted that the mean hypocentral depth of the observed data was
used here, which for the two bins of Fig. 5 were 9.80 and 9.83 km,
respectively, and for the two bins of the Fig. 6 were 10.10 and 8.13 km,
respectively.

In Fig. 7, the distance attenuation of Ds595 is illustrated. While
amplitude-based quantities decrease with source-to-site distance, the
significant duration of ground motion increases due to different waves
(e.g., P-, S-, and surface waves) travelling at different velocities and the
effect of scattering of those. The estimations of the proposed model are
compared with Afshari and Stewart [8] (AS16) and FXZ21 models. For
Ds595, both of these models and the proposed model estimate the geo-
metric mean from the two as-recorded horizontal components. While
the trends between the proposed model and AS16 are similar, the AS16
model predicts somewhat lower values of significant duration than the
proposed model. This difference is thought to be because of the different
database filtering criteria of the AS16 model to exclude recordings with
unreasonably large durations polluted by high-frequency noise, even
though the same database with the proposed model was used (i.e.,
NGA-West2). The FXZ21 model on the other hand tends to estimate
slightly higher values of duration compared to the proposed model.

Overall, the GGMM developed here seems to have good predict-
ability against the observed data when compared to the other models
currently available for these traditional IMs of spectral acceleration and
significant duration. Similar comparisons were done for the other
traditional IMs listed in Table 1 (i.e., PGA, PGD, PGV, Ds575 and spectral
acceleration at other periods), but were not included here due to space
limitations.

5.2.2. Next-generation IMs
The previous section focused on the comparison of traditional IMs,

for which several models already exist in the literature. It showed the
GGMM proposed here to be of similar quality and bolsters confidence in

its general use. In this section, we examine some next-generation IMs
that have emerged in recent years that tend not to have a plethora of
GMMs available. Hence, while these IMs have been shown in several
studies to be quite efficient and sufficient when performing seismic
vulnerability and risk analysis, the lack of robust GMMs to predict them
is extremely problematic as it means the hazard component of risk is
lacking. This study directly addresses this need.

Available GMMs estimating more advanced and complex IMs tend to
be more simplistic and can sometimes have limited ranges of applica-
tion. However, with the proposed model the trends of those next-
generation IMs are captured more accurately and for a wide range of
ground motion causal parameters. For instance, Figs. 8 and 9 present the
distance attenuation and magnitude amplification of FIV3(1.0s) for two
different magnitude bins and it is compared with the recently developed
model of Dávalos et al. [14] (DHM20), which to date is the only other
GMM available for this IM. The DHM20 model estimates the arbitrary
horizontal component definition, whereas the proposed model estimates
the geometric mean definition. The DHM20 model is limited to Vs,30
values between 180 m/s and 360 m/s and takes just two input param-
eters (i.e., rupture distance and magnitude). Here, the strike-slip
mechanism was examined and Vs,30 was between 180 and 360 m/s for
the sake of equal comparison. For the other input parameters, the
average was taken, except Rjb whose value was calculated from Rrup. It
can be seen that the proposed model does well in capturing the trends of
the cloud mean, while the DHM20 model generally predicts higher
values at near and far distances from the source, especially in lower
magnitudes.

Another IM that can be classified as next generation is the average
spectral acceleration, whose attenuation with distance is illustrated in
Fig. 10 for the Saavg3 definition of the IM described in Equation (3) and
at a period of 1s. The estimations of the proposed model are compared
directly with the model of Dávalos and Miranda [15] (DM21), and with
the ‘indirect method’ to compute the Saavg values. Regarding the latter
method, Kohrangi et al. [50] report the equations that can be used to
calculate the mean and standard deviation of Saavg, denoted μln Saavg |rup

and σln Saavg |rup, respectively, and they are formulated as follows:

μln Saavg |rup =

(
1
N

)

•
∑N

i=1
μln Sa(Ti)|rup (11)

σln Saavg |rup =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1
N

)2

•
∑N

i=1

∑N

j=1
ρln Sa(Ti),ln Sa(Tj) • σln Sa(Ti)|rup • σln Sa(Tj)|rup

√
√
√
√

(12)

where N refers to the number of Sa(T) values being averaged. μln Sa(Ti)|rup
and σln Sa(Ti)|rup are the logarithmic mean and standard deviation of Sa at
the ith period in the selected range for a given rupture scenario as ob-
tained from a standard GMM. ρln Sa(Ti),ln Sa(Tj) is the correlation

Fig. 4. Training and testing MSE and R2 values of the ANN model after the mixed effects regression.
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coefficient between ln Sa(Ti) and ln Sa
(
Tj
)
. Herein, the CB14 model is

used as the GMM and the Baker and Jayaram [51] model is used as the
correlation model to compute the mean and variance of logarithmic
Saavg values with the ’indirect method’ and compare with the output of
the proposed model.

It should be noted that the DM21 model estimates the arbitrary
horizontal component definition of Saavg, whereas the RotD50 definition
is chosen for the proposed model. Additionally, since the DM21 model is
limited to Vs,30 values between 180 and 360 m/s, only recordings from
sites abiding to those limits were used for the comparisons. It can be

Fig. 5. Magnitude amplification plots of Sa(0.01s), Sa(0.1s), Sa(0.5s), and Sa(1.0s) for two different rupture distance bins.
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observed from Fig. 10 that the indirect method does well in capturing
the trends of the observed data, since both the GMM and the correlation
model come from similar databases (NGA-West2 and NGA, respectively)
and have similar filtering criteria. Meanwhile, the direct estimations of
DM21 tend to deviate from the binned cloud mean of the data for short
and long distances. However, it is important to mention that DM21
suggest that the model should be used between 0 km ≤ Rjb ≤ 150 km,
which could explain some of these minor discrepancies. It is worth
noting that the indirect method may also be used with the proposed
GGMM, where the individual values of μln Sa(Ti)|rup and σln Sa(Ti)|rup are
estimated and the correlations are estimated with the ANN-based

correlation model presented in Section 6 and in Ref. [52].
Fig. 11 presents the estimations of the proposed GGMM of Saavg3 as a

function of magnitude for two different rupture distance bins, along with
the empirical data and the comparison with DM21 and the indirect
method. It can be observed that the estimations of the proposed model
are very close to the ones of the indirect method. The model of DM21 is
also close to the proposed model for low, average, and high magnitudes,
but slightly deviates in-between. Figs. 12 and 13 present the same in-
formation as Figs. 10 and 11, but for Saavg2. The DM21 is not included in
the comparison, because of the different period range used in their
calculation of Saavg, hence only the indirect method is included. It can be

Fig. 6. Distance attenuation plots of Sa(1.0s) for two different magnitude bins.

Fig. 7. Distance attenuation plots of Ds595 for two different magnitude bins.

Fig. 8. Distance attenuation plot of FIV3(1.0s) for two different magnitude bins.
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seen that the proposed model gives very similar estimations with the
calculated values with the indirect method, and both do well in
capturing the cloud mean. The only minor exception is the places where
data are scarce.

5.3. Response spectra

While the previous sections evaluated the comparisons of the GGMM
to available data and other available GMMs, this section provides some

brief illustrations of the response spectra that may be obtained for these
next-generation IMs investigated and how they are impacted by the
main causal parameters. The response spectra, as estimated by the
proposed model for FIV3 and Saavg3, are presented in Fig. 14 for different
ground motion scenarios. On the left panels of the plots, the distance is
kept constant while the magnitude is varied, and on the right panels, the
magnitude is kept constant while the distance is varied. It can be seen
that the FIV3 is generally monotonically increasing with period and
plateaus after a period of around 0.7s, suggesting that for medium-to

Fig. 9. Magnitude amplification plots of FIV3(1.0s) for two different rupture distance bins.

Fig. 10. Distance attenuation plot of Saavg3(1.0s) for two different magnitude bins.

Fig. 11. Magnitude amplification plots of Saavg3(1.0s) for two different rupture distance bins.

S. Aristeidou et al.



Soil Dynamics and Earthquake Engineering 184 (2024) 108851

11

long-period structures, the FIV3 IM is almost period-independent. There
is an exception for low magnitudes (i.e., 4.5), where there is a mild
decrease for long periods. It can also be observed how the effect of the
earthquake magnitude is more important than the effect of the source-
to-site distance. Similar observations can be made for Saavg3, but with
the difference that it decreases in value with increasing period, which is
an expected observation given the similarity in definition to the well-
known Sa IM.

5.4. Residuals analysis

To ensure that the proposed model did not contain any potential bias
with respect to any input parameter, an analysis of the inter-, intra-
event, and total residuals was performed. Here, the residuals are
defined as log10(observations) - log10(predictions) and are plotted in
Fig. 15 for the inter-, intra-event, and total residuals against three
ground motion causal parameters (i.e., Mw, Rrup and Vs,30), respectively,
for three IMs (i.e., Sa(1.0s), FIV3(1.0s), Ds595). It can be observed that
there is no notable bias in the binned mean of residuals. Also, there is no
significant change in standard deviations versus the GM causal param-
eters, further corroborating the homoscedasticity assumption for the
dispersion model of the proposed GGMM. This assumption suggests that
the variability of predicted IM is consistent across different levels of the
predictor variables, such as Mw, Rrup or Vs,30. All the observations in
Fig. 15 were checked to be valid for all the combinations of IMs, ground
motion causal parameters and residual types.

5.5. Model dispersion

The residuals between the values estimated from the proposed
GGMM and those observed from the recorded ground motions were used
to calculate the inter- and intra-event logarithmic standard deviations.
The final standard deviations of all the IMs included in this study are
presented in Fig. 16, along with their respective counterparts given from
other GMMs available in the literature for relative comparison. All
standard deviations were transformed into natural logarithm (i.e., ln)
units to have an equal basis for comparison since the fitted GGMM was
in terms of log base 10 and other models have used natural logarithm. It
can be seen that the total standard deviation of the GGMM is the lowest
for most IMs compared to other GMMs available in the literature. This is
the case, especially for long-period IMs, although a slight difference was
observed at shorter periods, where the intra-event term is slightly higher
than CB14, for example, meaning the overall uncertainty is a little
higher. Similar trends were observed in the recent GMM of Sedaghati
and Pezeshk [53], developed with machine-learning methods. This was
investigated, and no specific reason was found to be causing it. It could
be argued that previous models used much larger datasets, which could
influence the overall variability, but it must be recalled that strict
filtering criteria were applied here, as outlined in Section 3, which are
expected to decrease the aleatory variability and increase the
within-model epistemic uncertainty. In any case, it is noted here that
while the mean predictions shown in Fig. 5 may be satisfactory at a
shorter period, the uncertainty shown in Fig. 16 is slightly higher using
the proposed GGMM. If the analyst is focusing solely on this short period

Fig. 12. Distance attenuation plot of Saavg2(1.0s) for two different magnitude bins.

Fig. 13. Magnitude amplification plots of Saavg2(1.0s) for two different rupture distance bins.
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range, other existing models may be more suitable, but from a broader
and more generalised perspective, the proposed GGMM tends to have
lower uncertainty across several IMs.

Additionally, the proposed model maintains a low inter-event stan-
dard deviation and is almost constant throughout all IMs. The high
difference between intra- and inter-event standard deviations in this
model is likely because of the better characterisation of source effects in
comparison to path and site effects. Another reason could be the
generally strict filtering criteria applied on the initial strong motion
dataset, allowing only recordings from earthquake magnitudes above
4.5, while the source-to-site distance limit was loose, allowing distances
from 0 to 300 km.

The comparison of the dispersion of IMs with different horizontal
component definitions is illustrated in Fig. 17. It can be seen that the
RotD100 definition presents the highest logarithmic standard deviation
from the three, followed by the RotD50 and then the geometric mean
definition. This difference is more pronounced in Sa IMs, rather than
Saavg2 and Saavg3, which is an expected result due to the inherent
averaging effect of Saavg. Nonetheless, all horizontal component defi-
nitions present very similar standard deviations. The standard deviation
of different horizontal component definitions of Sa was also studied by
Beyer and Bommer [54], but they did not include the RotD50 definition,
as it was not available at the time. The closest definition to RotD50
would be the GMRotD50, for which they found about the same or slightly
lower dispersion, than the geometric mean definition. Regarding the
RotD100 definition, denoted as ‘MaxD’ in Beyer and Bommer [54], they
found its dispersion to be slightly higher than the geometric mean
definition, which is aligned with what has been observed here.

6. Correlation modelling

As previously stated, this GGMM, which includes several IMs, finds
good utility in creating consistent (i.e., from the same database and
GMM) correlation models, which are needed for ground motion record
selection and identification of ground motion field used in regional
analysis. The general procedure to get those correlation models is out-
lined in the following. From Equation (9), the total normalised residual,
δi, and total standard deviation, σi, can be expressed as the sum of inter-
and intra-event residuals as:

δiσi = δbiτi + δwiϕi (13)

This means, by implication, that log10IMi and δi exhibit a linear
relationship. Therefore, the correlation between two IMs is equal to the
correlation between the normalised residuals, which in mathematical
expression translates to:

ρlog10 IMi|X,θ,log10 IMj|X,θ = ρδi ,δj (14)

Then, the correlations of residuals between different IMs can be esti-
mated using the Pearson product-moment correlation coefficient for-
mula:

ρx,y =

∑

n
[(x − x)(y − y)]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

n

[
(x − x)2

]∑

n

[
(y − y)2

]√ (15)

where x and y are generic variables, corresponding to δbi and δbj for
inter-event correlation for IMs i and j, and to δwi and δwj for intra-event
correlation in this application; x and ȳ are the sample means and Σn is

Fig. 14. Model median estimates of response spectra of FIV3 (top) and Saavg3 (bottom).
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the summation of all n ground motion records. From the definition of
correlation coefficient, the correlation between total residuals can be
estimated from the inter- and intra-event correlations as follows:

ρδi ,δj =
ρδbi ,δbj τiτj + ρδwi ,δwj

ϕiϕj

σiσj
(16)

Correlation models between PGA, PGV, Sa, FIV3, Ds595, Ds575, Saavg2
and Saavg3 were developed using this GGMM and are derived, presented,

Fig. 15. Inter-, intra-event, and total residuals versus Mw, Rrup, and Vs,30, respectively, for three different IMs. Black dots and error bars represent the binned mean
and ± one standard deviation, respectively.

Fig. 16. Inter-, intra-event and total standard deviations of the proposed model for all IMs, compared with models from the literature.
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and discussed in detail in Aristeidou et al. [52]. Interested readers
interested in these correlations and their modelling are referred to that
work for further details and discussion. As an example, the correlation
coefficients between Sa and FIV3 and between Ds and Saavg3 are illus-
trated in Figs. 18 and 19, respectively.

7. Summary and conclusions

This study proposed a generalised ground motion model (GGMM) to
estimate different types of amplitude and cumulative-based intensity
measures (IMs) for active shallow crustal earthquakes. These IMs
include the peak ground acceleration, PGA; peak ground velocity, PGV;
peak ground displacement, PGD; spectral acceleration Sa(T); two defi-
nitions of significant duration, Ds575 and Ds595; filtered incremental
velocity, FIV3(T); and two definitions of average spectral acceleration,
Saavg2(T) and Saavg3(T), meaning a total of 169 output IMs were pre-
sented here. Testing and training data were collected from a stringently
filtered subset of records from the NGA-West2 strong motion database.

Thorough validation exercises and comparisons with other ground
motion models (GMMs) were carried out to demonstrate the suitability
of the GGMM. It shows how this framework can effectively capture the
complex relationships and interactions between different IMs, which is
one of the advantages of this GGMM, as it estimates various IMs in a
single model. This helps develop more consistent correlation models
between the estimated IMs since they come from the same database and
GMM. Meanwhile, more IMs of interest can be seamlessly added to the
model’s outputs with only minor modifications (e.g., increase of hidden
layer neurons). Another advantage observed was that it minimises the
dispersion of residuals (aleatory uncertainty) while keeping the two
fitting performance metrics (i.e., R2 and MSE) at an optimal level. The

logarithmic total standard deviations were low, especially in long-period
IMs.

A few limitations of the approaches and methods adopted for the
development of this model are that these types of models work well only
where data are available, the analyst has less control over the analytical
functional forms, which ideally reflect the actual physics of the seis-
mological phenomena, and maybe the homoscedasticity assumption for

Fig. 17. Comparison of inter-, intra-event and total standard deviations of IMs with different horizontal component definitions.

Fig. 18. Empirical and corresponding predicted correlation coefficients between Sa and FIV3.

Fig. 19. Empirical and corresponding predicted correlation coefficients be-
tween Ds and Saavg3.
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treatment of dispersion. The reason for not opting for heteroscedastic
dispersion model, is there are already a lot of output IMs from the same
model, so adding heteroscedasticity would overcomplicate the model,
for small potential benefit.

Overall, the results and comparisons suggest that the proposed model
performs excellently in estimating a variety of traditional and next-
generation IMs, without any bias against the input features. The pro-
posed model can be used in seismic hazard analysis to derive site-
specific uniform hazard spectra, hazard curves for the IM of choice,
scenario-based shake maps, and more. This model represents a very
useful addition in many situations where more advanced intensity
measures, such as filtered incremental velocity or average spectral ac-
celeration, are required. Recent research has highlighted the potential of
these intensity measures for a better characterisation of structural
response (i.e., sufficiency, efficiency etc.) but to date, there has been
little work done to provide suitable models to quantify their hazard (i.e.,
hazard computability) [3]. This paper has directly aimed at filling that
gap. Furthermore, the use of this single GGMM has allowed consistent
correlation models to be quantified by Aristeidou et al. [52] which paves
the way for more refined record selections following the generalised
conditional intensity measure approach [55].

Following the finalisation of the model, the Authors have imple-
mented this GMM in a local version of the well-known PSHA tool
OpenQuake. It has been tested and observed to seamlessly integrate with
other GMMs available in the literature. The code available online for this
GMM takes inputs the nine seismological parameters and outputs the
mean and sigma of a specific IM, as with any other GMM. Therefore,
even if the model is non-parametric, it can be used like any other clas-
sical GMM and easily adapted to any PSHA procedure/code.
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[14] Dávalos H, Heresi P, Miranda E. A ground motion prediction equation for filtered
incremental velocity, FIV3. Soil Dynam Earthq Eng 2020;139:106346. https://doi.
org/10.1016/j.soildyn.2020.106346.
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[44] Močkus J. On bayesian methods for seeking the extremum 1975:400–4. https://
doi.org/10.1007/3-540-07165-2_55.

[45] Kotha SR, et al. A regionally-adaptable ground-motion model for shallow crustal
earthquakes in Europe. Bull Earthq Eng 2020;18(9):4091–125. https://doi.org/
10.1007/s10518-020-00869-1.

[46] Boore DM, et al. A ground-motion prediction model for shallow crustal earthquakes
in Greece. Bull Seismol Soc Am 2021;111(2):857–74. https://doi.org/10.1785/
0120200270.

[47] Boore DM, et al. NGA-West2 equations for predicting PGA, PGV, and 5% damped
PSA for shallow crustal earthquakes. Earthq Spectra 2014;30(3):1057–85. https://
doi.org/10.1193/070113EQS184M.

[48] Atik LA, et al. The variability of ground-motion prediction models and its
components. Seismol Res Lett 2010;81(5):794–801. https://doi.org/10.1785/
gssrl.81.5.794.

[49] Abrahamson NA, Youngs RR. A stable algorithm for regression analyses using the
random effects model. Bull Seismol Soc Am 1992;82(1):505–10. https://doi.org/
10.1785/BSSA0820010505.

[50] Kohrangi M, et al. Conditional spectrum-based ground motion record selection
using average spectral acceleration. Earthq Eng Struct Dynam 2017;46(10):
1667–85. https://doi.org/10.1002/eqe.2876.

[51] Baker JW, Jayaram N. Correlation of spectral acceleration values from NGA ground
motion models. Earthq Spectra 2008;24(1):299–317. https://doi.org/10.1193/
1.2857544.

[52] Aristeidou S, Shahnazaryan D, O’Reilly GJ. Correlation models for next-generation
amplitude and cumulative intensity measures using artificial neural networks.
Earthq Spectra 2024:1–24.

[53] Sedaghati F, Pezeshk S. Machine learning–based ground motion models for shallow
crustal earthquakes in active tectonic regions. Earthq Spectra 2023;39(4):2406–35.
https://doi.org/10.1177/87552930231191759.

[54] Beyer K, Bommer JJ. Relationships between median values and between aleatory
variabilities for different definitions of the horizontal component of motion. Bull
Seismol Soc Am 2006;96(4 A):1512–22. https://doi.org/10.1785/0120050210.

[55] Bradley BA. A generalized conditional intensity measure approach and holistic
ground-motion selection. Earthq Eng Struct Dynam 2010;39(12):1321–42. https://
doi.org/10.1002/eqe.995.

S. Aristeidou et al.

https://doi.org/10.1002/eqe.496
https://doi.org/10.1002/eqe.496
https://doi.org/10.1002/eqe.2575
https://doi.org/10.1002/eqe.3205
https://doi.org/10.1080/13632469909350343
https://doi.org/10.1080/13632469909350343
https://doi.org/10.1193/122813EQS298MR2
http://refhub.elsevier.com/S0267-7261(24)00403-2/sref33
http://refhub.elsevier.com/S0267-7261(24)00403-2/sref33
https://doi.org/10.1002/eqe.2603
https://doi.org/10.1002/eqe.2603
http://refhub.elsevier.com/S0267-7261(24)00403-2/sref35
http://refhub.elsevier.com/S0267-7261(24)00403-2/sref35
http://refhub.elsevier.com/S0267-7261(24)00403-2/sref35
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1214/aoms/1177729392
http://refhub.elsevier.com/S0267-7261(24)00403-2/sref38
https://www.tensorflow.org/
https://doi.org/10.1007/s10518-011-9313-z
https://doi.org/10.1007/s10518-011-9313-z
https://doi.org/10.1007/s10518-022-01598-3
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1080/01621459.1984.10478083
https://doi.org/10.1007/3-540-07165-2_55
https://doi.org/10.1007/3-540-07165-2_55
https://doi.org/10.1007/s10518-020-00869-1
https://doi.org/10.1007/s10518-020-00869-1
https://doi.org/10.1785/0120200270
https://doi.org/10.1785/0120200270
https://doi.org/10.1193/070113EQS184M
https://doi.org/10.1193/070113EQS184M
https://doi.org/10.1785/gssrl.81.5.794
https://doi.org/10.1785/gssrl.81.5.794
https://doi.org/10.1785/BSSA0820010505
https://doi.org/10.1785/BSSA0820010505
https://doi.org/10.1002/eqe.2876
https://doi.org/10.1193/1.2857544
https://doi.org/10.1193/1.2857544
http://refhub.elsevier.com/S0267-7261(24)00403-2/sref52
http://refhub.elsevier.com/S0267-7261(24)00403-2/sref52
http://refhub.elsevier.com/S0267-7261(24)00403-2/sref52
https://doi.org/10.1177/87552930231191759
https://doi.org/10.1785/0120050210
https://doi.org/10.1002/eqe.995
https://doi.org/10.1002/eqe.995

	Artificial neural network-based ground motion model for next-generation seismic intensity measures
	1 Introduction
	2 Strong motion database and filtering
	3 Predictor and response features
	4 Model architecture
	4.1 Fixed-effects with artificial neural network
	4.2 Mixed-effects regression

	5 Model performance
	5.1 Performance metrics
	5.2 Comparison with other GMMs
	5.2.1 Traditional IMs
	5.2.2 Next-generation IMs

	5.3 Response spectra
	5.4 Residuals analysis
	5.5 Model dispersion

	6 Correlation modelling
	7 Summary and conclusions
	Funding

	Availability of data and material
	Code availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


