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      ABSTRACT 

Lateral-torsional buckling (LTB) is a critical instability phenomenon in slender beams 

subjected to major axis bending, involving both lateral displacement and torsional rotation. 

Although the critical buckling load has been widely studied, the nonlinear post-buckling 

response of beams has gathered less attention.  

This thesis investigates the LTB behavior of simply-supported European rolled I-section 

(IPE) beams subjected to midspan point load. Beam profiles of IPE 120 to IPE 300 with 

unbraced span lengths varying from 2.0 m to 6.0 m and with “fork-type” restraint, that 

prevents twist of cross-section, are examined. The study examines both the critical buckling 

load and the post-buckling response of the beams neglecting cross-section warping. 

Two analytical models employing energy-based formulations derived from the principle of 

minimum potential energy assuming circular and parabolic deformation paths are 

employed with a goal of developing accurate analytical solutions. These models provide 

expressions for load as a function of displacement and twist, offering insight into the 

beam’s buckling and post-buckling behavior. In parallel, a nonlinear numerical finite 

element model (FEM) is developed in OpenSeesPy to simulate the LTB behavior. The 

study includes a comparison of critical buckling load obtained from analytical methods, the 

developed numerical model and the Eurocode formulation. The emphasis of the work is 

placed on a comparison of post-buckling response from the analytical methods and FEM 

with the responses from OpenSeesPy simulations served as reliable numerical benchmark. 

Results obtained for various IPE sections and beam spans indicate that while the analytical 

circular deformation path model provides a critical buckling load expression which exhibits 

a strong resemblance with the Eurocode formulation, it tends to overestimate the critical 

load by roughly 105% compared to the numerical model. Moreover, its post-buckling 

response shows softening behavior unlike the numerical model and its deformed shapes 

completely disagree with the numerical solutions, even though they are qualitatively similar. 

In contrast, Eurocode critical buckling load predictions, used alongside the numerical and 

analytical results for comparison, underestimate the numerical results by about 12%.  

A parabolic deformation path model is developed, with a coefficient determined based on 

the numerical critical load, to solve the problem of unmatching critical load and post-

buckling behavior of the circular path model. Post-buckling responses are examined using 



load-deflection and load-twist curves. The post-buckling response results from the 

numerical model shows hardening behavior with a nearly elliptical deformed shape while 

the responses from the parabolic path with the calibrated coefficients shows hardening 

behavior with deformed shapes converging initially towards the numerical results for 

intermediate beam cross-sections and spans. 

Overall, this study highlights the capabilities and limitations of simplified analytical models 

for capturing post-LTB behavior, offering valuable comparisons with code-based and 

numerical simulation. With further study including material nonlinearity, warping effects, 

and other imperfections it can be applied for practical analysis and design. 
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1. INTRODUCTION 

1.1 BACKGROUND 

Steel beams, especially European rolled I-sections (IPE sections), are by far the most widely 

used in the steel construction industry for buildings, bridges, and other structures. While 

these beams are effective in resisting bending about their major axis (vertical displacement), 

they are exposed to lateral instability. A beam which is loaded and bent in the plane of 

greatest flexural rigidity may buckle laterally (about minor axis) at a certain critical value of 

the load. This lateral buckling is of importance in the design of beams without lateral 

support, provided the flexural rigidity of the beam in the plane of bending is large in 

comparison with the lateral bending and torsional rigidity. If the load on such a beam is 

below the critical value, the beam will be stable in the upright position. As the load is 

increased, however, a condition is reached at which a slightly deflected and twisted form 

of equilibrium becomes possible, shown in Figure 1.1. The plane configuration of the beam 

is now unstable, and the lowest load at which this critical condition occurs represents the 

critical load for the beam. (Nseir, 2023; Timoshenko & Gere, 2012) 

This global instability mode, shown in Figure 1.1, that affects slender, laterally unrestrained 

beams subjected to loads that cause deformations involving lateral deflection coupled with 

twisting of cross-section of the beam is called Lateral-torsional buckling (LTB). This mode 

governs the design of the beams when the unrestrained length is large compared with the 

torsional stiffness of the cross-section. (Trahair, 1993) 

 

 

 

 

 

 

 Figure 1.1. LTB of a simply-supported I-beam. 
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Extensive analytical, numerical, and experimental investigations about LTB have been 

conducted in the past. While numerical and experimental investigations have provided 

insights into the post-buckling response of steel beams, the use of analytical approaches 

have been limited upto the bifurcation point. 

The present study aims to assess the post-buckling response behavior of simply-supported 

steel beams subjected to a midspan point load using simplified analytical approach. It deals 

specifically with IPE beams exhibiting “fork-type” end supports and ignoring the effect of 

warping. 

1.2 MOTIVATION 

In this thesis, the post-LTB response and the critical buckling load of a simply-supported 

IPE beam subjected to a midspan point load is explored using analytical methods applying 

the principle of minimum potential energy for assumed deformation path. Analytical and 

numerical approaches are used to estimate the beam’s response under the applied loading 

condition. 

The objectives of this thesis are: 

• To derive an approximate closed-form analytical solution for the post-buckling 

response using an assumed deformation path, 

• To compare the analytical predictions with numerical solutions from OpenSeesPy, 

• To identify the influence of section size and span length on the response. 

The study aims to assess the benefits and limitations of the analytical approach in predicting 

the critical buckling load and post-buckling behavior by comparing the LTB responses with 

the results from the numerical method, thereby evaluating its applicability to practical 

purposes. 

1.3 PROBLEM STATEMENT 

This study is limited to simply-supported steel I beams, with a fork-type support inhibiting 

twist of cross-section at the ends as shown in Figure 1.1, subjected to a point load applied 

at midspan. The simply-supported beams are analysed using three approaches: 

i) Two analytical approachs by means of the principle of minimum potential energy, and 

ii) Numerical finite element model (FEM) approach using OpenSeesPy. 

Furthermore, recommended formula from Eurocode is used for computation and 

comparison of critical buckling loads. 
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The beams are assumed to be made of linear elastic material, meaning no material 

nonlinearity is considered. The modelling assumed no cross-section warping. In addition, 

the analytical solutions use simplifying kinematic assumptions to permit closed-form 

results. 

 

1.4 OUTLINE OF THE THESIS 

This thesis is organized into six chapters, followed by references and appendices. A brief 

description of the content of each chapter is provided below: 

Chapter 1: Introduction. 

Chapter 2: Literature Review: - This chapter provides a focused review of previous studies 

related to post-buckling response in beams and research papers that are like this work. It 

discusses key findings and limitations of earlier works together with the methods that have 

been used in the field. The review helps to identify gaps and paves the way for the current 

study. 

Chapter 3: Analytical Methodology: - This chapter presents the two deformation path 

assumptions with their theoretical background and how they are applied to find closed-

form expressions for the LTB in simply-supported beams with the given boundary 

conditions. 

Figure 1.2. Deformation of a simply-supported I-beam subjected to point load. 
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Chapter 4: Numerical Methodology: - This chapter describes the numerical approach used 

for simulating the behavior of the simply-supported beams undergoing LTB using 

OpenSeesPy. It provides an overview of the FEM, material properties, boundary 

conditions, and the steps taken to simulate post-buckling behavior. 

Chapter 5: Results and Discussion: - This chapter presents the results obtained from both 

the analytical and numerical methods. Computation and comparison of the critical buckling 

load and post-buckling behavior of beams with different cross-sections and spans are 

considered. The critical buckling loads are computed using three methods (Eurocode 

formulation, numerical approach and analytical method based on circular deformation 

path) and the comparison of post-buckling behaviors are shown using three methods 

(numerical approach and analytical methods based on circular and parabolic deformation 

paths). 

Chapter 6: Conclusions and Recommendations for Future Work: - The final chapter 

summarizes the key findings of the study based on the analysis of the results. The 

conclusions drawn from the comparison of analytical and numerical methods are 

presented. Additionally, recommendations for future research directions, including 

potential improvements in modeling techniques, parameter consideration and areas 

requiring further investigation, are provided. 

 

 

 

 

 

  



 

 

2.LITERATURE REVIEW 

2.1 INTRODUCTION 

LTB is particularly relevant in steel structures and is triggered when the applied major axis 

bending moment reaches a critical value, beyond which the beam can no longer maintain 

its original equilibrium configuration. (Timoshenko & Gere, 2012) 

Different researchers have conducted numerical, analytical and experimental studies to 

show the LTB behavior of steel beams. This chapter presents a review of some of the 

studies. 

2.2 ANALYTICAL STUDIES 

The classical closed-form solution for the elastic critical LTB capacity at the onset of 

buckling was first proposed by Timoshenko (1936) for simply supported, doubly 

symmetric, I-shaped members subjected to uniform moment through analytical study on 

the classical elastic buckling theory. This study was extended by Vlaslov (1961) to account 

for warping torsion introducing St. Venant tosion and warping stiffnesses into the critical 

moment formulations. Although these formulations are the basis for design code 

provisions, they do not provide the post-buckling response of the beams beyond the 

bifurcation point. (Nayak et al., 2024; V. Z. Vlasov, 1961) 

An investigation of the behavior of the buckled structure in the immediate neighborhood 

of the bifurcation point using theory of elastic stability analysis is performed by Koiter. 

(Koiter, 1945).  The study used an asymptotic expansion of total potential energy leading 

to reduced amplitude equations with expansion coefficients that govern the stability of the 

nonlinear post-critical behavior. It showed the effect of geometric imperfections on the 

load capacity depending on the values and signs of the expansion coefficients. 

2.3 DESIGN CODE RECOMMENDATION 

Eurocode 3 (EN 1993-1-1, 2005) provides widely used design formulas for elastic critical 

moment Mcr, incorporating flexural stiffness, torsional rigidity, and warping effects with 

effective length factors (C₁, C₂). 

In the NCCI technical reference (Bureau, 2005), a formula is presented for calculating the 

elastic critical LTB moment Mcr, derived from classical buckling theory, for a prismatic 
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beam members with doubly symmetric cross-section, loading in the plane of the web at 

which LTB occurs and taking into consideration the member’s geometry, support 

conditions, and loading configuration with the following expression: 

𝑀𝑐𝑟 = 𝐶1
𝜋2𝐸𝐼𝑦
(𝑘𝐿)2

{√(
𝑘

𝑘𝑤
)
2 𝐼𝑤
𝐼𝑦
+
(𝑘𝐿)2𝐺𝐼𝑡
𝜋2𝐸𝐼𝑦

+ (𝐶2𝑧𝑔)
2
− 𝐶2𝑧𝑔} (2.1) 

The expression in Equation 2.1 from the NCCI technical reference (Bureau, 2005) accounts 

for the coupled interaction of lateral displacement, torsional rotation, and warping 

resistance. The parameters C1 and C2, which are typically obtained from tables, significantly 

influence the calculated value of Mcr and their values depend on loading conditions, end 

restraint conditions, and the shape of the bending moment diagram. 

While Eurocode 3 offers guideline for determining the onset of LTB by primarily 

addressing the elastic critical moment, it does not provide guidance on the post-buckling 

behavior of beams. 

2.4 MODIFICATION FACTORS 

Analytical expressions for the critical load have been modified to capture more complex 

scenarios. One example is the study by Andarde (2007). In the study the domain of 

application of the commonly employed “three-factor formula” to estimate the elastic 

critical moment of steel beams prone to LTB was extended to I-section cantilevers. The 

study considered cantilever I-section beams (i) with equal or unequal flanges, (ii) fully built-

in or free to warp at the support and (iii) acted on by uniformly distributed or concentrated 

tip loads (applied either at the shear centre or at one of the flanges). It used numerical 

results of a parametric study, obtained by the Rayleigh–Ritz method, for the development 

of approximate analytical expressions for the C1, C2 and C3 factors appearing in the three-

factor formula shown in Equation 2.2. (Andrade et al., 2007) 

𝑀𝑐𝑟 = 𝐶1
𝜋2𝐸𝐼𝑦
(𝑘𝐿)2

{√(
𝑘

𝑘𝑤
)
2 𝐼𝑤
𝐼𝑦
+
(𝑘𝐿)2𝐺𝐼𝑡
𝜋2𝐸𝐼𝑦

+ (𝐶2𝑧𝑔 − 𝐶3𝑧𝑗)
2
− (𝐶2𝑧𝑔 − 𝐶3𝑧𝑗)} (2.2) 

A second example is the study by Nayak (2024) that investigated the suitability of 

commonly used LTB modification factors in literature and design specifications under 

varying moment gradients and boundary conditions, accomplished via comparisons with 

analytical solutions using the Rayleigh-Ritz method and numerical solutions from finite 

element analyses. In the study analytical LTB modification factors are derived for doubly 

symmetric I-shaped members with different combinations of ideal flexural and torsional 

boundary conditions (simply supported and fixed) and subjected to different loading 
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scenarios. The validity of the modification factors is also assessed for intermediate restraint 

conditions. (Nayak et al., 2024) 

2.5 EXPERIMENTAL AND NUMERICAL STUDIES 

Both numerical simulations utilizing FEM and experimental testings have been utilized to 

investigate LTB, facilitating parametric studies and validations. A notable study on the 

behaviour of Steel I-Beams exhibiting LTB at elevated temperature has been carried out by 

comparison of experimental and numerical analysis by Vila Real (2003). A set of 120 full-

scale tests based on a reaction frame and on a hydraulic system has been carried out for 

beams of IPE 100 sections with lengths varying from 0.5 to 6.5 m, submitted to 

temperatures varying from room temperature to 600 °C. The study proposed a safer model 

to predict the LTB resistance in fire design situation through validation. (Vila Real et al., 

2003) 

Gonçalves employed a two-node geometrically exact beam finite elements to assess the 

behaviour of steel I-section beams undergoing large displacements, finite rotations and 

LTB including post-buckling behaviour. The study examined three support/ loading cases, 

namely: simply supported beams under uniform moment, simply supported beams 

subjected to a midspan vertical force and cantilevers subjected to a free end vertical force, 

to determine (i) elastic nonlinear bifurcation loads (i.e., bifurcation loads accounting for 

pre-buckling deflections), (ii) large displacement elastic post-buckling paths including 

geometric imperfection effects and (iii) large displacement elastoplastic equilibrium paths 

accounting for geometric imperfections and residual stresses with a particular focus on 

both standard and wide-flange I-sections. (Gonçalves, 2019) 

An analytical, numerical and experimental investigation on the LTB of hot-rolled steel I-

section beams with fork-type end supports and acted by simple transverse loadings (mostly 

applied end moments) and various axial tension values is done by Nseir (2023). In the study 

derivation and validation of an analytical expression providing critical buckling moments 

of uniformly bent beams subjected to tension was presented. The analytical finding was 

followed by a numerical study on the beneficial influence of axial tension on beams under 

non-uniform bending. The paper addressed the performance of two experimental tests 

aimed at determining the behavior and ultimate strength of narrow and wide flange beams 

subjected to eccentric axial tension. (Nseir, 2023)





 

 

3.ANALYTICAL MODELING 

3.1 STRUCTURAL MODELLING AND PROCEDURE 

The analytical procedure developed in this study evaluates the LTB behavior of simply-

supported steel I-section beams subjected to bending about their major axis due to a point 

load at midspan, shown in Figure 3.1. Classical beam theory and principle of minimum 

potential energy are used to find formulations capturing the coupled interaction between 

lateral displacement (minor axis deflection) and torsional rotation that characterizes LTB. 

The primary goal is to derive the load-displacement response, capturing both the critical 

buckling load and post-buckling behavior under increasing transverse point load at 

midspan. The analytical approach provides an understanding of the beam's stability 

response under idealized loading and support conditions. This response is used for 

comparison with the results of finite element simulations which are the benchmarks. 

 

 

 

 

 

 

The beam is homogeneous, linearly elastic, and prismatic, with material properties 

corresponding to typical structural steel used in IPE sections. Young’s modulus of E=200 

GPa and shear modulus of G=80GPa are taken, which are treated as constants throughout 

the analysis, assuming isotropic behavior and neglecting material nonlinearity or plasticity 

effects. 

Geometric properties of the beam section are obtained from standard European IPE 

profiles, including the height h, cross-sectional area A, minor and major axis moments of 

inertia Iy and Iz, torsional constant It, and warping constant Iw. The profiles of the beam 

considered in this study are from IPE 120 to IPE 300 with unbraced span lengths varying 

from 2.0 m to 6.0 m. The beam is assumed to be simply-supported at both ends with lateral 

and torsional restraints provided by fork-type supports. 

Figure 3.1. Simply-supported beam subjected to point load at midspan. 
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The analytical model assumes circular and parabolic deformation paths for the relationship 

between vertical and lateral displacement. The midspan twist angle serves as a parametric 

variable to describe the deformed shape taking into consideration torsional rotation. The 

corresponding flexural stiffness about the strong axis is defined as kv, flexural stiffness 

about the weak axis is defined as ku, and the torsional stiffness is given by kΦ. Derivation 

of expressions for the stiffnesses that govern the resistance of the beam to vertical, lateral 

and torsional deformations are shown in section 3.2. Although the stiffness terms change 

with deformations, constant values of stiffnesses are used in this thesis work. 

Using the principle of minimum potential energy, the equilibrium path is derived by first 

finding the total potential energy from internal strain energy and the external work done 

by the applied transverse point load followed by minimizing the total potential energy with 

respect to the lateral displacement u and torsional rotation (twist angle) 𝜙, as shown in 

Figure 1.2. This leads to a nonlinear equation involving trigonometric functions and their 

interaction with geometric and material properties which provides an expression for the 

applied point load P, shown in Figure 3.1, as a function of the twist angle, stiffnesses and 

other system parameters, capturing the full behavior including the buckling and post-

buckling response of the beam at the midspan. 

3.2 DISCRETIZATION 

To permit closed-form analytical modeling, the beam is approximated using a discrete 

system. The force-deformation in the major and minor axes, and the twist are modeled as 

discrete degrees of freedom with associated stiffnesses. The degrees of freedom assume 

"modal" deformations associated with the deformations caused by a midspan point load. 

The simply-supported beam subjected to a point load at midspan is modelled as a beam 

with vertical and lateral linear springs at the midspan and torsional springs at the supports. 

3.2.1 Vertical Stiffness 

A vertical load P is applied at midspan on the simply-supported beam system as shown in 

Figure 3.2. 

 

 

 

 

 

 

 

Figure 3.2. Vertical deflection of simply-supported beam due to vertical point load. 
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The vertical displacement v at midspan due to the applied vertical load P is: 

𝑣 =
𝑃𝐿3

48𝐸𝐼𝑧
 (3.1) 

Then, the vertical load causing the vertical displacement v at midspan is: 

𝑃 =
48𝐸𝐼𝑧
𝐿3

𝑣 (3.2) 

The vertical stiffness is the force required to cause a unit vertical displacement v. Therefore, 

the vertical stiffness of the system is: 

𝑘𝑣 =
48𝐸𝐼𝑧
𝐿3

 (3.3) 

3.2.2 Lateral Stiffness 

The lateral stiffness is equal to a lateral force required to cause a unit lateral displacement. 

It is derived in a similar way as the vertical stiffness, and it involves the minor axis moment 

of inertia. Therefore, the lateral stiffness of the system is: 

𝑘𝑢 =
48𝐸𝐼𝑦

𝐿3
 (3.4) 

3.2.3 Torsional Stiffness 

A torsional moment T is applied at midspan on the simply-supported beam system as 

shown in Figure 3.3. 

 

 

 

 

 

 

The expression for the angle of twist 𝜙 at midspan due to the applied torsional moment T 

is derived as: 

𝑑𝜙

𝑑𝑥
=

𝑇

𝐺𝐼𝑡
 (3.5) 

𝑑𝜙 =
𝑇

𝐺𝐼𝑡
𝑑𝑥 (3.6) 

Figure 3.3. Twist of simply-supported beam due to torsional moment. 
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Integrating both sides of Equation 3.6: 

𝜙 = ∫
𝑇/2

𝐺𝐼𝑡
𝑑𝑥

𝐿/2

0

 (3.7) 

𝜙 =
(𝑇/2)

𝐺𝐼𝑡
(
𝐿

2
 ) (3.8) 

Then, the torsional moment causing the torsional rotation 𝜙 at midspan is: 

𝑇 =
4𝐺𝐼𝑡
𝐿

𝜙 (3.9) 

The torsional stiffness is the torsional moment required to cause a unit torsional rotation 

𝜙. Therefore, the torsional stiffness of the system is: 

𝑘𝜙 =
4𝐺𝐼𝑡
𝐿
 (3.10) 

3.3 GENERAL POTENTIAL ENERGY EQUATION 

The potential energy for the simply-supported beam subjected to midspan point load P 

shown in Figure 3.4(a) and that is modelled as a beam with torsional springs with stiffness 

of kΦ at the supports, a lateral linear spring with stiffness of ku and a vertical linear spring 

with stiffness of kv at the midspan shown in Figure 3.4(b) is given in Equation 3.11. 

 

 

Π = [
1

2
𝑘𝑢𝑢

2] + 2 ∗ [
1

2
𝑘𝜙𝜙

2] − [𝑃𝑣] (3.11) 

Figure 3.4. Discritization of simply-supported beam subjected to point load. 
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➢ The first term, [
1

2
𝑘𝑢𝑢

2], is the potential energy due to the lateral deflection. 

➢ The second term, [1
2
𝑘𝜙𝜙

2], is the potential energy related to the twisting of the 

section about its longitudinal axis. It is multiplied by two because of the two 

rotational springs at the two ends of the beam. 
➢ The third term, −[𝑃𝑣], is the potential energy lost through the vertical motion of 

the point load. 

The vertical load P is assumed to be applied at the centroid of the section, and the beam is 

pinned at one end and free to move longitudinally at the other end as shown with the bi-

directional red arrow in Figure 3.4(a). 

The relationship of the lateral displacement u and vertical displacement v of the centroid 

of the section, shown in Figure 3.5, depends on the chosen deformation path. In general, 

these are two independent degrees of freedom. However, two alternative kinematic 

assumptions are used here to simplify the analysis. In Sections 3.4 and 3.5 expressions 

showing their relationship are derived for circular and parabolic deformation paths 

respectively, shown in Figure 3.5. 

Note that in Figure 3.5 all variables, points, lines, shapes and variables in blue are for 

circular path, while the ones in red are for parabolic path and the ones in black are used in 

both cases. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.5. Assumed deformed orientation of the cross-section for the two paths. 
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3.4 CIRCULAR DEFORMATION PATH 

In this section the beam is assumed to follow a circular deformation path, represented by 

the blue broken curve in Figure 3.5, after lateral instability. The undeformed orientation of 

the cross-section of the beam is shown in black while the deformed orientation is shown 

in blue in Figure 3.5 above. 

From the figure, using trigonometric relations and linear vertical deflection equation, the 

lateral displacement u and the vertical displacement v of the centroid of the section are: 

𝑢 = (𝑦𝑏
′ +

ℎ

2
) 𝑠𝑖𝑛𝜙 (3.12)   

𝑣 =
𝑃

𝑘𝑣
− (𝑦𝑏

′ +
ℎ

2
) 𝑐𝑜𝑠𝜙 + (𝑦𝑏 +

ℎ

2
) (3.13) 

In the above expression for the vertical deflection, the first term is related to the 

dependency of the vertical displacement on the applied point load and the vertical stiffness 

of the beam. This term does not vanish unless the applied load becomes zero or the vertical 

stiffness is very large. The remaining two terms in Equation 3.13 and the expression for 

the lateral displacement in Equation 3.12 are found by applying trigonometry to the 

deformed and undeformed orientation of the beam cross-section after lateral instability 

shown in Figure 3.5. 

Assuming a circular path of deflection (i.e. The curve showing the deflection-path is 

assumed to be a circle with radius of yb = y΄b). 

Rearranging the lateral displacement expression in Equation 3.12: 

 𝑢 = (𝑦𝑏 +
ℎ

2
) 𝑠𝑖𝑛𝜙 

⟹ 𝑦𝑏 +
ℎ

2
=

𝑢

𝑠𝑖𝑛𝜙
 (3.14) 

From the vertical displacement expression in Equation 3.13: 

𝑣 =
𝑃

𝑘𝑣
− (𝑦𝑏 +

ℎ

2
) 𝑐𝑜𝑠𝜙 + (𝑦𝑏 +

ℎ

2
) 

⟹ 𝑣 =
𝑃

𝑘𝑣
+ (𝑦𝑏 +

ℎ

2
) (1 − 𝑐𝑜𝑠𝜙) (3.15) 

Substituting the expression from Equation 3.14 into Equation 3.15, the vertical 

displacement v of the centroid of the section will be: 

⟹ 𝑣 =
𝑃

𝑘𝑣
+ (

𝑢

𝑠𝑖𝑛𝜙
) (1 − 𝑐𝑜𝑠𝜙) 
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⟹ 𝑣 =
𝑃

𝑘𝑣
+ 𝑢 (

1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
) (3.16) 

Substituting the above expression into the total potential energy formulation shown in 

Equation 3.11: 

Π = [
1

2
𝑘𝑢𝑢

2] + 2 ∗ [
1

2
𝑘𝜙𝜙

2] − [𝑃𝑣] 

⟹ Π = [
1

2
𝑘𝑢𝑢

2] + 2 ∗ [
1

2
𝑘𝜙𝜙

2] − [𝑃 ∗ (
𝑃

𝑘𝑣
+ 𝑢 (

1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
))] 

⟹ Π =
1

2
𝑘𝑢𝑢

2 + 𝑘𝜙𝜙
2 − 𝑃𝑢 (

1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
) −

𝑃2

𝑘𝑣
 (3.17) 

3.4.1 Minimization of Potential Energy 

The minimization of the potential energy is done with respect to the lateral displacement u 

and rotational twist 𝜙 to find the equilibrium path. 

𝜕Π

𝜕𝑢
= 0 ⟹

𝜕

𝜕𝑢
(
1

2
𝑘𝑢𝑢

2 + 𝑘𝜙𝜙
2 − 𝑃𝑢 (

1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
) −

𝑃2

𝑘𝑣
) = 0 (3.18) 

⟹ 𝑘𝑢𝑢 − 𝑃 (
1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
) = 0 (3.19) 

⟹ 𝑃 = 𝑘𝑢𝑢 (
𝑠𝑖𝑛𝜙

1 − 𝑐𝑜𝑠𝜙
) (3.20) 

𝜕Π

𝜕𝜙
= 0 ⟹

𝜕

𝜕𝜙
(
1

2
𝑘𝑢𝑢

2 + 𝑘𝜙𝜙
2 − 𝑃𝑢 (

1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
) −

𝑃2

𝑘𝑣
) = 0 (3.21) 

⟹ 2𝑘𝜙𝜙 − 𝑃𝑢 (
𝑠𝑖𝑛2𝜙 − 𝑐𝑜𝑠𝜙(1 − 𝑐𝑜𝑠𝜙)

𝑠𝑖𝑛2𝜙
) = 0 

⟹ 2𝑘𝜙𝜙 − 𝑃𝑢 (
𝑠𝑖𝑛2𝜙 + 𝑐𝑜𝑠2𝜙 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛2𝜙
) = 0 

⟹ 2𝑘𝜙𝜙 − 𝑃𝑢 (
1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛2𝜙
) = 0 

⟹ 2𝑘𝜙𝜙 − 𝑃𝑢 (
1 − 𝑐𝑜𝑠𝜙

1 − 𝑐𝑜𝑠2𝜙
) = 0 

⟹ 2𝑘𝜙𝜙 − 𝑃𝑢 (
1

1 + 𝑐𝑜𝑠𝜙
) = 0 (3.22) 

⟹ 𝑃 =
2𝑘𝜙𝜙

𝑢
(1 + 𝑐𝑜𝑠𝜙) (3.23) 



Wendwesen Fekede 12 

3.4.2 Equilibrium Path 

Equating Equations 3.20 and 3.23: 

𝑘𝑢𝑢 (
𝑠𝑖𝑛𝜙

1 − 𝑐𝑜𝑠𝜙
) =

2𝑘𝜙𝜙

𝑢
(1 + 𝑐𝑜𝑠𝜙) 

𝑢2 =
2𝑘𝜙𝜙

𝑘𝑢
(
1 − 𝑐𝑜𝑠2𝜙

𝑠𝑖𝑛𝜙
) =

2𝑘𝜙𝜙

𝑘𝑢
(
𝑠𝑖𝑛2𝜙

𝑠𝑖𝑛𝜙
) 

𝑢2 =
2𝑘𝜙

𝑘𝑢
(𝜙𝑠𝑖𝑛𝜙) (3.24) 

From Equation 3.20: 

𝑃 = 𝑘𝑢𝑢 (
𝑠𝑖𝑛𝜙

1 − 𝑐𝑜𝑠𝜙
) 

𝑢 =
𝑃

𝑘𝑢
(
1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
) (3.25) 

Substituting the above expression into Equation 3.24: 

[
𝑃

𝑘𝑢
(
1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
)]
2

=
2𝑘𝜙

𝑘𝑢
(𝜙𝑠𝑖𝑛𝜙) 

𝑃2

𝑘𝑢
2 (
(1 − 𝑐𝑜𝑠𝜙)2

𝑠𝑖𝑛2𝜙
) =

2𝑘𝜙

𝑘𝑢
(𝜙𝑠𝑖𝑛𝜙) 

𝑃2

𝑘𝑢
(
1 − 𝑐𝑜𝑠𝜙

1 + 𝑐𝑜𝑠𝜙
) = 2𝑘𝜙(𝜙𝑠𝑖𝑛𝜙) 

𝑃2 =  2𝑘𝜙𝑘𝑢 ((𝜙𝑠𝑖𝑛𝜙) (
1 + 𝑐𝑜𝑠𝜙

1 − 𝑐𝑜𝑠𝜙
)) 

𝑃2 =  2𝑘𝜙𝑘𝑢 ((𝜙𝑠𝑖𝑛𝜙)(
(1 + 𝑐𝑜𝑠𝜙)2

1 − 𝑐𝑜𝑠2𝜙
)) =  2𝑘𝜙𝑘𝑢 ((𝜙𝑠𝑖𝑛𝜙)(

(1 + 𝑐𝑜𝑠𝜙)2

𝑠𝑛2𝜙
)) 

𝑃2 =  2𝑘𝜙𝑘𝑢 (𝜙
(1 + 𝑐𝑜𝑠𝜙)2

𝑠𝑖𝑛𝜙
) 

𝑃 = √2𝑘𝜙𝑘𝑢 (𝜙
(1 + 𝑐𝑜𝑠𝜙)2

𝑠𝑖𝑛𝜙
) (3.26) 

The equilibrium path for the assumed circular deformation path is a function of two 

stiffness parameters and the twist angle at midspan of the beam as shown in Equation 3.26. 
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3.5 PARABOLIC DEFORMATION PATH 

In this section the beam is assumed to follow a parabolic deformation path, represented by 

the red broken curve in Figure 3.5, after lateral instability. The undeformed orientation of 

the cross-section of the beam is shown in black while the deformed orientation is shown 

in red in Figure 3.5 above. 

Applying trigonometric relations and linear vertical deflection equation, the lateral 

displacement u and the vertical displacement v of the centroid of the section are: 

𝑢 = (𝑦𝑏
′ +

ℎ

2
) 𝑠𝑖𝑛𝜙 (3.27)   

𝑣 =
𝑃

𝑘𝑣
− (𝑦𝑏

′ +
ℎ

2
) 𝑐𝑜𝑠𝜙 + (𝑦𝑏 +

ℎ

2
) (3.28) 

Assuming a parabolic path of deflection with the following expression: 

𝑦 = 𝑎 ∙ 𝑧2 + 𝑏 ∙ 𝑧 + 𝑐 (3.29) 

Where: a, b and c are coefficients of the parabolic path of deflection and taking the origin 

as shown in Figure 3.5. The coefficients b and c are zero as shown in Appendix A. 

Therefore, the equation of the parabola is: 

⟹ 𝑦 = 𝑎 ∙ 𝑧2 (3.30) 

The value of a should be chosen in such a way that the parabolic solution gives better 

prediction of the responses of the beam and this is shown in Section 5.2. 

Considering the bottom of the deflected beam cross-section along its axis of symmetry 

inclined at an angle of 𝜙 as the second point on the deflection-path with coordinate (z, y) 

and applying trigonometry to find z and y: 

𝑧 = 𝑢 −
ℎ

2
𝑠𝑖𝑛𝜙 (3.31) 

𝑦 = 𝑦𝑏 − 𝑦𝑏
′ 𝑐𝑜𝑠𝜙 (3.32) 

The vertical displacement in Equation 3.28 is expanded as: 

𝑣 =
𝑃

𝑘𝑣
− (𝑦𝑏

′ +
ℎ

2
) 𝑐𝑜𝑠𝜙 + (𝑦𝑏 +

ℎ

2
) 

𝑣 =
𝑃

𝑘𝑣
− 𝑦𝑏

′ 𝑐𝑜𝑠𝜙 + 𝑦𝑏 −
ℎ

2
𝑐𝑜𝑠𝜙 +

ℎ

2
 (3.33) 

Combining Equations 3.32 and 3.33 then solving for 𝑦: 

𝑣 =
𝑃

𝑘𝑣
+ 𝑦 −

ℎ

2
𝑐𝑜𝑠𝜙 +

ℎ

2
 (3.34) 
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𝑦 = 𝑣 −
𝑃

𝑘𝑣
−
ℎ

2
+
ℎ

2
𝑐𝑜𝑠𝜙 (3.35) 

Therefore, the coordinate of the second point on the deflection-path becomes: 

(𝑥, 𝑦) = (𝑢 −
ℎ

2
𝑠𝑖𝑛𝜙   ,   𝑣 −

𝑃

𝑘𝑣
−
ℎ

2
+
ℎ

2
𝑐𝑜𝑠𝜙) (3.36) 

Solving the deflection-path equation, shown in Equation 3.30, at the second point: 

𝑦 = 𝑎 ∙ 𝑧2 

𝑣 −
𝑃

𝑘𝑣
−
ℎ

2
+
ℎ

2
𝑐𝑜𝑠𝜙 = 𝑎 ∙ (𝑢 −

ℎ

2
𝑠𝑖𝑛𝜙)

2

 

⟹ 𝑣 = 𝑎 ∙ (𝑢 −
ℎ

2
𝑠𝑖𝑛𝜙)

2

−
ℎ

2
𝑐𝑜𝑠𝜙 +

ℎ

2
+
𝑃

𝑘𝑣
 

⟹ 𝑣 = 𝑎 ∙ (𝑢 −
ℎ

2
𝑠𝑖𝑛𝜙)

2

+
ℎ

2
(1 − 𝑐𝑜𝑠𝜙) +

𝑃

𝑘𝑣
 (3.37) 

Substituting the above expression of v into the total potential energy formulation shown 

in Equation 3.11: 

Π = [
1

2
𝑘𝑢𝑢

2] + 2 ∗ [
1

2
𝑘𝜙𝜙

2] − [𝑃𝑣] 

⟹ Π = [
1

2
𝑘𝑢𝑢

2] + 2 ∗ [
1

2
𝑘𝜙𝜙

2] − [𝑃 ∗ (𝑎 ∙ (𝑢 −
ℎ

2
𝑠𝑖𝑛𝜙)

2

+
ℎ

2
(1 − 𝑐𝑜𝑠𝜙) +

𝑃

𝑘𝑣
)] 

⟹Π =
1

2
𝑘𝑢𝑢

2 + 𝑘𝜙𝜙
2 − 𝑃 ∗ (𝑎 ∙ (𝑢 −

ℎ

2
𝑠𝑖𝑛𝜙)

2

+
ℎ

2
(1 − 𝑐𝑜𝑠𝜙) +

𝑃

𝑘𝑣
) (3.38) 

3.5.1 Minimization of Potential Energy 

As shown in Equation 3.38, the potential energy, inaddition to other parameters, is a 

function of two displacement variables u and 𝜙. Therefore, minimization of the potential 

energy is done with respect to the lateral displacement u and the rotational twist 𝜙 to find 

the equilibrium path. 

𝜕Π

𝜕𝑢
= 0 ⟹

𝜕

𝜕𝑢
(
1

2
𝑘𝑢𝑢

2 + 𝑘𝜙𝜙
2 − 𝑃 (𝑎 (𝑢 −

ℎ

2
𝑠𝑖𝑛𝜙)

2

+
ℎ

2
(1 − 𝑐𝑜𝑠𝜙) +

𝑃

𝑘𝑣
)) = 0 

⟹ 𝑘𝑢𝑢 − 2𝑃 ∗ 𝑎 (𝑢 −
ℎ

2
𝑠𝑖𝑛𝜙) = 0 (3.39) 

⟹ 𝑃 =
𝑘𝑢𝑢

2𝑎 (𝑢 −
ℎ
2
𝑠𝑖𝑛𝜙)

 (3.40) 
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𝜕Π

𝜕𝜙
= 0 ⟹

𝜕

𝜕𝜙
(
1

2
𝑘𝑢𝑢

2 + 𝑘𝜙𝜙
2 − 𝑃 (𝑎 (𝑢 −

ℎ

2
𝑠𝑖𝑛𝜙)

2

+
ℎ

2
(1 − 𝑐𝑜𝑠𝜙) +

𝑃

𝑘𝑣
)) = 0 

⟹ 2𝑘𝜙𝜙 − 𝑃 ∗ (2𝑎 ∙ (𝑢 −
ℎ

2
𝑠𝑖𝑛𝜙) ∙ (−

ℎ

2
𝑐𝑜𝑠𝜙) +

ℎ

2
(𝑠𝑖𝑛𝜙)) = 0 

⟹ 2𝑘𝜙𝜙 − 𝑃 ∗ (𝑎 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙 (
ℎ

2
𝑠𝑖𝑛𝜙 − 𝑢) +

ℎ

2
(𝑠𝑖𝑛𝜙)) = 0 

⟹ 2𝑘𝜙𝜙 − 𝑃 ∗
ℎ

2
(𝑎 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙 (𝑠𝑖𝑛𝜙 −

2𝑢

ℎ
) + 𝑠𝑖𝑛𝜙) = 0 

⟹ 4𝑘𝜙𝜙 − 𝑃 ∗ ℎ (𝑎 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙 (𝑠𝑖𝑛𝜙 −
2𝑢

ℎ
) + 𝑠𝑖𝑛𝜙) = 0 (3.41) 

⟹ 𝑃 =
4𝑘𝜙𝜙

ℎ (𝑎 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙 (𝑠𝑖𝑛𝜙 −
2𝑢
ℎ
) + 𝑠𝑖𝑛𝜙)

 (3.42) 

3.5.2 Equilibrium Path 

Solving for u from Equation 3.39: 

𝑘𝑢𝑢 − 2𝑃 ∙ 𝑎 (𝑢 −
ℎ

2
𝑠𝑖𝑛𝜙) = 0 

𝑘𝑢𝑢 − 2𝑃 ∙ 𝑎 ∙ 𝑢 + 𝑃 ∙ 𝑎 ∙ ℎ ∙ 𝑠𝑖𝑛𝜙 = 0 

𝑘𝑢𝑢 − 2𝑃 ∙ 𝑎 ∙ 𝑢 = −𝑃 ∙ 𝑎 ∙ ℎ ∙ 𝑠𝑖𝑛𝜙 

𝑢 =
𝑃 ∙ 𝑎 ∙ ℎ ∙ 𝑠𝑖𝑛𝜙

2𝑃 ∙ 𝑎 − 𝑘𝑢
 (3.43) 

Expanding Equation 3.41 and substituting the expression of u from Equation 3.43: 

4𝑘𝜙𝜙 − 𝑃 ∙ ℎ (𝑎 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙 (𝑠𝑖𝑛𝜙 −
2𝑢

ℎ
) + 𝑠𝑖𝑛𝜙) = 0 

4𝑘𝜙𝜙 − 𝑃 ∙ ℎ(𝑎 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 − 𝑎 ∙ 𝑐𝑜𝑠𝜙 ∙ 2𝑢 + 𝑠𝑖𝑛𝜙) = 0 

4𝑘𝜙𝜙 − 𝑃 ∙ ℎ (𝑎 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 − 𝑎 ∙ 𝑐𝑜𝑠𝜙 ∙ 2 (
𝑃 ∙ 𝑎 ∙ ℎ ∙ 𝑠𝑖𝑛𝜙

2𝑃 ∙ 𝑎 − 𝑘𝑢
) + 𝑠𝑖𝑛𝜙) = 0 

4𝑘𝜙𝜙 − 𝑃 ∙ ℎ ((
2𝑃 ∙ 𝑎2 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 − 𝑘𝑢 ∙ 𝑎 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 − 2𝑃 ∙ 𝑎

2 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙

2𝑃 ∙ 𝑎 − 𝑘𝑢
) + 𝑠𝑖𝑛𝜙) = 0 

4𝑘𝜙𝜙 − 𝑃 ∙ ℎ (
−𝑘𝑢 ∙ 𝑎 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 + 2𝑃 ∙ 𝑎 ∙ 𝑠𝑖𝑛𝜙 − 𝑘𝑢𝑠𝑖𝑛𝜙

2𝑃 ∙ 𝑎 − 𝑘𝑢
) = 0 
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8𝑃𝑘𝜙𝜙 ∙ 𝑎 − 4𝜙𝑘𝜙𝑘𝑢 − 𝑃 ∙ ℎ(−𝑘𝑢 ∙ 𝑎 ∙ ℎ ∙ 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 + 2𝑃 ∙ 𝑎 ∙ 𝑠𝑖𝑛𝜙 − 𝑘𝑢𝑠𝑖𝑛𝜙)

2𝑃 ∙ 𝑎 − 𝑘𝑢
= 0 

8𝑃𝑘𝜙𝜙 ∙ 𝑎 − 4𝜙𝑘𝜙𝑘𝑢 + 𝑃 ∙ 𝑎 ∙ ℎ
2 ∙ 𝑘𝑢 ∙ 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 − 2𝑃

2 ∙ 𝑎 ∙ ℎ ∙ 𝑠𝑖𝑛𝜙 + 𝑃 ∙ ℎ ∙ 𝑘𝑢𝑠𝑖𝑛𝜙 = 0 

𝑃2 ∙ (−2𝑎 ∙ ℎ ∙ 𝑠𝑖𝑛𝜙) + 𝑃 ∙ (8𝑎 ∙ 𝑘𝜙𝜙 + 𝑎 ∙ ℎ
2 ∙ 𝑘𝑢 ∙ 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 + ℎ ∙ 𝑘𝑢𝑠𝑖𝑛𝜙) − 4𝜙𝑘𝜙𝑘𝑢 = 0 (3.44) 

The above expression is a quadratic equation as a function of the applied load P which can 

be written as: 

𝑎1 ∙ 𝑃
2 + 𝑏 ∙ 𝑃 + 𝑐 = 0 (3.45) 

Where: 

{

𝑎1 = −2𝑎 ∙ ℎ ∙ 𝑠𝑖𝑛𝜙

𝑏 = 8𝑎 ∙ 𝑘𝜙𝜙 + 𝑎 ∙ ℎ
2 ∙ 𝑘𝑢 ∙ 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 + ℎ ∙ 𝑘𝑢𝑠𝑖𝑛𝜙

𝑐 = −4𝜙𝑘𝜙𝑘𝑢

} (3.46) 

Solving for P using the quadratic solution: 

𝑃 =
−𝑏 ± √𝑏2 − 4 ∗ 𝑎1 ∗ 𝑐

2 ∗ 𝑎1
 

The two solutions of P are P1 and P2 as shown in the following expressions: 

𝑃1 =

𝑎ℎ2𝑘𝑢𝑠𝑖𝑛(2𝜙)
2

+ 8𝑎𝑘𝜙𝜙 + ℎ𝑘𝑢𝑠𝑖𝑛𝜙 − √
𝑎2ℎ4𝑘𝑢

2(1 − 𝑐𝑜𝑠(4𝜙))
8

+ 8𝑎2ℎ2𝑘𝜙𝑘𝑢𝜙𝑠𝑖𝑛(2𝜙) + 64𝑎
2𝑘𝜙

2𝜙2

+2𝑎ℎ3𝑘𝑢
2𝑠𝑖𝑛2(𝜙)𝑐𝑜𝑠𝜙 − 16𝑎ℎ𝑘𝜙𝑘𝑢𝜙𝑠𝑖𝑛(𝜙) + ℎ

2𝑘𝑢
2𝑠𝑖𝑛2(𝜙)

4𝑎ℎ𝑠𝑖𝑛(𝜙)
 (3.47)

 

𝑃2 =

𝑎ℎ2𝑘𝑢𝑠𝑖𝑛(2𝜙)
2

+ 8𝑎𝑘𝜙𝜙 + ℎ𝑘𝑢𝑠𝑖𝑛𝜙 + √
𝑎2ℎ4𝑘𝑢

2(1 − 𝑐𝑜𝑠(4𝜙))
8

+ 8𝑎2ℎ2𝑘𝜙𝑘𝑢𝜙𝑠𝑖𝑛(2𝜙) + 64𝑎
2𝑘𝜙

2𝜙2

+2𝑎ℎ3𝑘𝑢
2𝑠𝑖𝑛2(𝜙)𝑐𝑜𝑠𝜙 − 16𝑎ℎ𝑘𝜙𝑘𝑢𝜙𝑠𝑖𝑛(𝜙) + ℎ

2𝑘𝑢
2𝑠𝑖𝑛2(𝜙)

4𝑎ℎ𝑠𝑖𝑛(𝜙)
 (3.48)

 

 

The two expressions shown in Equations 3.47 and 3.48 representing the equilibrium paths 

for the assumed parabolic deformation path are more complex functions than the one 

found for the circular path in Equation 3.26. The equilibrium paths depend on two stiffness 

parameters, the twist angle at midspan, height of the section and coefficient of the parabolic 

path. 

Depending on the direction of instability the two expressions give symmetric equilibrium 

paths. This is shown in the comparison of post-buckling response in Section 5.3. 



 

 

4.NUMERICAL MODELING 

4.1 STRUCTURAL MODELLING AND PROCEDURE 

To simulate the LTB behavior of simply-supported steel I-beam subjected to point load at 

midspan, FEM was developed using OpenSeesPy, the Python interface for the OpenSees 

structural analysis framework. This simulation enables an investigation of instability 

behavior across a variety of beam geometries and serves as a numerical counterpart to the 

analytical LTB predictions. 

The beam is modeled using three nodes and two elastic beam-column elements, as shown 

in Figure 4.1, which account for flexural stiffness about both principal axes and torsional 

rigidity. Node-1 corresponds to the pinned support, Node-3 to the roller support, and 

node-2 lies at midspan where a vertical point load is applied. To initiate buckling, a small 

initial imperfection is introduced in the lateral-direction at node-2. A corotational geometric 

transformation is utilized to capture large displacements and rotations, which are needed 

for simulating the nonlinear post-buckling behavior. 

Assuming that buckling occurs prior to yielding, although this is not the case in all design 

scenarios, material behavior is modeled as linearly elastic. Steel is defined using an elastic 

uniaxial material with a modulus of elasticity E=200 GPa and shear modulus G=80 GPa, 

typical of structural steel. Since the focus of this study is on the elastic stability, no material 

inelasticity is considered. Section properties, including cross-sectional area, moments of 

inertia and torsional constant are assigned using elastic section definitions based on the 

selected IPE profile. 

The boundary conditions are defined to realistically simulate simply-supported conditions 

with fork-type supports at the two ends while allowing lateral-torsional movement. Node-

1 is fully restrained in all translational degrees of freedom and in rotation about the 

longitudinal-axis, but it is free to rotate about the major- and minor-axes. Node-3 is 

restrained in vertical and lateral translations and rotation about the longitudinal-axis, but it 

is free to translate in the longitudinal direction and free to rotate about the major- and 

minor-axes. These boundary conditions provided by the pin, roller and fork-type supports 

facilitate the full expression of LTB behavior without over-constraining the structure. 
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A vertical point load is applied at the midspan node using a linear time series, and a static 

analysis is conducted using the arc-length control method. This approach allows the 

simulation to trace the response beyond the critical buckling load and capture post-buckling 

deformation. Throughout the analysis, structural responses including vertical deflection, 

lateral displacement, torsional rotation, and applied load factor are recorded at each 

increment. These are then visualized through automatically generated plots, such as load-

deflection, load-twist and deformed shape curves, providing insight into the beam’s stability 

performance under increasing load. 

The OpenSeesPy code for the numerical analysis is shown in Appendix B. 

 

 

 

Figure 4.1. Numerical model of simply-supported beam subjected to point load. 



 

 

5.RESULTS AND DISCUSSION 

This section shows and compares the results, obtained for LTB analysis of simply-

supported steel beams with IPE profiles, from numerical modeling and analytical solutions, 

assuming both circular and parabolic deformation paths. The following subsections 

provide a detailed comparison of these approaches: 

5.1 COMPARISON OF CRITICAL BUCKLING LOAD 

This section presents the comparative analysis of critical buckling loads (Pcr) for various 

IPE sections and span lengths using four methods: 

• Eurocode-based formulation,  

• Nonlinear finite element analysis via OpenSeesPy,  

• An analytical solution assuming a circular deformation path, and 

• An analytical solution assuming a parabolic deformation path. 

The comparisons provide insight into the accuracy, conservatism, and theoretical 

foundations of each approach under LTB conditions. 

5.1.1 Critical Buckling Load from Eurocode-3 Simplified Formula 

This method, grounded in linear elastic theory, incorporates geometric properties such as 

the warping constant Iw, torsional constant It, and effective flexural stiffnesses Iy and Iz. 

The resulting Mcr is then translated to a critical vertical load Pcr, allowing comparison with 

the numerical and analytical methods. 

𝑀𝑐𝑟 = 𝐶1
𝜋2𝐸𝐼𝑦
(𝑘𝐿)2

{√(
𝑘

𝑘𝑤
)
2 𝐼𝑤
𝐼𝑦
+
(𝑘𝐿)2𝐺𝐼𝑡
𝜋2𝐸𝐼𝑦

+ (𝐶2𝑧𝑔)
2
− 𝐶2𝑧𝑔} (5.1) 

When the shear center coincides with the centroid, like cross-sections with double 

symmetry, and when the load acts directly through the centroid, the offset zg=0, thus 

eliminating the last term in the buckling formula. 

Recognizing the flexural stiffness about the weak axis is defined as ku = 48EIy/L3, the 

torsional stiffness is given by kΦ = 4GIt/L and rearranging Equation 5.1. 

𝑀𝑐𝑟 = 𝐶1
𝜋2𝐸𝐼𝑦
(𝑘𝐿)2

{√(
𝑘

𝑘𝑤
)
2 𝐼𝑤
𝐼𝑦
+
(𝑘𝐿)2𝐺𝐼𝑡
𝜋2𝐸𝐼𝑦

}  
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𝑀𝑐𝑟 = 𝐶1
𝜋2𝐸𝐼𝑦
(𝑘𝐿)2

√
(𝑘𝐿)2𝐺𝐼𝑡
𝜋2𝐸𝐼𝑦

 (5.2) 

𝑀𝑐𝑟 = 𝐶1√
𝜋2𝐸𝐼𝑦
(𝑘𝐿)2

𝐺𝐼𝑡  (5.3) 

𝑀𝑐𝑟 = 𝐶1√
𝜋2𝐿2

4 ∗ 48
(
48𝐸𝐼𝑦

𝐿3
) (
4𝐺𝐼𝑡
𝐿
) (5.4) 

For a simply-supported beam subjected to midspan point load the shape of the bending 

moment diagram is triangular, and the corresponding values of the constant parameters are 

C1 = 1.348 and C2 = 0.630 as shown in Table 5.1. (Bureau, 2005) 

Table 5.1. Values of C1 and C2 for transverse loading cases. (Bureau, 2005) 

Loading and support conditions Bending moment diagram 𝑪𝟏 𝑪𝟐 

  
1.127 0.454 

  
2.578 1.554 

  
1.348 0.630 

  
1.683 1.645 

Note: The critical moment 𝑐𝑟 is calculated for the section with the maximum moment along 
the member 

 

Therefore, substituting the values of C1, C2 and zg for a simply-supported beam with doubly 

symmetric cross-sections subjected to a midspan point load acting directly through the 

centroid, the elastic critical LTB moment Mcr will be: 

𝑀𝑐𝑟 = 𝐶1√
𝜋2𝐿2

192
𝑘𝑢𝑘𝜙 = 𝐶1 ∙

𝜋𝐿

√192
√𝑘𝑢𝑘𝜙 = 1.348 ∗

𝜋

√192
∗ 𝐿√𝑘𝑢𝑘𝜙 

𝑀𝑐𝑟 = 0.3056 ∙ 𝐿√𝑘𝑢𝑘𝜙 (5.5) 
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To find the critical LTB point load Pcr at midspan of the beam corresponding to Mcr in 

Equation 5.5, the bending moment from static analysis at midspan of the simply-supported 

beam subjected to P (i.e. PL/4) is equated to Mcr: 

𝑀𝑐𝑟 =
𝑃𝑐𝑟𝐿

4
= 0.3056 ∙ 𝐿√𝑘𝑢𝑘𝜙 (5.6) 

𝑃𝑐𝑟 = 4 ∗ 0.3056√𝑘𝑢𝑘𝜙 

𝑃𝑐𝑟 = 1.2225√𝑘𝑢𝑘𝜙 (5.7) 

5.1.2 Critical Buckling Load from Numerical Simulation (OpenSeesPy) 

This method, grounded in a nonlinear geometric analysis, was conducted through a 

corotational beam-column formulation. The load was incrementally increased until the 

structure lost stability, capturing the bifurcation point corresponding to Pcr. This method 

accounts for both geometric nonlinearity and torsional-flexural interaction, offering a 

close-to-reality reference solution. 

5.1.3 Critical Buckling Load from Analytical Circular Path Solution 

This method approximates buckling behavior by assuming the midspan twist and lateral 

deflection follow a circular arc, deriving Pcr through energy minimization. This method 

generally predicted higher critical loads than the Eurocode but aligned well with OpenSees 

results. 

Taking Equations 3.19 and 3.22 respectively: 

𝑘𝑢𝑢 − 𝑃 (
1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
) = 0 

2𝑘𝜙𝜙 − 𝑃𝑢 (
1

1 + 𝑐𝑜𝑠𝜙
) = 0 

To find the value of the applied load P for very small value of twist angle 𝜙 (i.e. The critical 

LTB point load Pcr): 

• First order Taylor expansion and L’ Hopital’s rule are applied on the first expression 

above, from Equation 3.19, to avoid division by zero when calculating the limit as 𝜙 

approaches 𝜙0 = 0, 

𝑘𝑢𝑢 − 𝑃 (
1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
) = 0 

𝐿𝑒𝑡 𝑓(𝜙) =
1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
 (5.8) 

Using the first two terms of Taylor expansion: 

𝑓(𝜙) = 𝑓(𝜙0) + 𝑓
′(𝜙0)(𝜙 − 𝜙0) (5.9) 
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The first term of Equation 5.9: 

𝑓(𝜙0) =
1 − 𝑐𝑜𝑠𝜙0
𝑠𝑖𝑛𝜙0

 (5.10) 

Since division by zero can’t be done the above expression can be solved by L’ Hopital’s 

rule taking the derivatives of both the numerator and denominator: 

lim
𝜙⟶𝜙0

𝑓(𝜙) =
𝑠𝑖𝑛𝜙0
𝑐𝑜𝑠𝜙0

=
0

1
= 0 (5.11) 

The Second term of Equation 5.9: 

𝑓′(𝜙) =
𝑠𝑖𝑛2𝜙 − 𝑐𝑜𝑠𝜙(1 − 𝑐𝑜𝑠𝜙)

𝑠𝑖𝑛2𝜙
  

𝑓′(𝜙) =
𝑠𝑖𝑛2𝜙 + 𝑐𝑜𝑠2𝜙 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛2𝜙
=
1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛2𝜙
=
1 − 𝑐𝑜𝑠𝜙

1 − 𝑐𝑜𝑠2𝜙
 

𝑓′(𝜙) =
1

1 + 𝑐𝑜𝑠𝜙
 

𝑓′(𝜙0) =
1

1 + 𝑐𝑜𝑠𝜙0
=
1

2
 (5.12) 

Substituting Equations 5.11 and 5.12 into Equation 5.9: 

𝑓(𝜙) = 𝑓(𝜙0) + 𝑓
′(𝜙0)(𝜙 − 𝜙0) = 0 +

1

2
𝜙 =

𝜙

2
 (5.13) 

Then Equation 3.19 becomes: 

𝑘𝑢𝑢 − 𝑃 (
1 − 𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
) = 0 

𝑘𝑢𝑢 − 𝑃(𝑓(𝜙)) = 0 

𝑘𝑢𝑢 − 𝑃𝑐𝑟 (
𝜙

2
) = 0 

⟹ 𝑃𝑐𝑟 =
2𝑘𝑢𝑢

𝜙
 (5.14) 

• Substituting 𝜙 = 𝜙0 = 0 into Equation 3.22, 

2𝑘𝜙𝜙 − 𝑃𝑢 (
1

1 + 𝑐𝑜𝑠𝜙
) = 0 

2𝑘𝜙𝜙 − 𝑃𝑐𝑟𝑢 (
1

1 + 𝑐𝑜𝑠𝜙0
) = 0 

2𝑘𝜙𝜙 − 𝑃𝑐𝑟𝑢 (
1

2
) = 0 (5.15) 
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• Substituting the formula for Pcr from Equation 5.14 into the above expression: 

2𝑘𝜙𝜙 − (
2𝑘𝑢𝑢

𝜙
)𝑢 (

1

2
) = 0 

⟹ 2𝑘𝜙𝜙 −
𝑘𝑢𝑢

2

𝜙
= 0 

⟹ 2𝑘𝜙𝜙
2 = 𝑘𝑢𝑢

2 

⟹ 𝑢 = 𝜙√
2𝑘𝜙

𝑘𝑢
 (5.16) 

• Solving for Pcr by substituting the above expression of u into Equation 5.14: 

𝑃𝑐𝑟 =
2𝑘𝑢𝑢

𝜙
 (5.17) 

⟹ 𝑃𝑐𝑟 =
2𝑘𝑢
𝜙

∗ 𝜙√
2𝑘𝜙

𝑘𝑢
 

⟹ 𝑃𝑐𝑟 = 2√2√𝑘𝑢𝑘𝜙 = √8𝑘𝑢𝑘𝜙 (5.18) 

Alternatively, the critical load can be found by substituting 𝑠𝑖𝑛𝜙 = 𝜙 and 𝑐𝑜𝑠𝜙 = 1, for very 

small twist 𝜙, into the expression of the circular deformation path shown in Equation 3.26. 

𝑃𝑐𝑟 =  √2𝑘𝜙𝑘𝑢 (𝜙
(1 + 1)2

𝜙
) =  √2𝑘𝜙𝑘𝑢 ∗ 4 =  √8𝑘𝜙𝑘𝑢  

The expression for the critical buckling load based on the circular deformation path, shown 

in Equation 5.18, exhibits a strong resemblance with the Eurocode formulation, as it 

similarly depends on the square root of the product of the lateral bending stiffness and 

torsional stiffness, shown in Equation 5.7. This similarity is particularly promising, as it 

indicates that the underlying mechanics captured by the deformation path approach are 

consistent with established design standards. Such alignment not only validates the 

theoretical model but also suggests its potential applicability within code-based structural 

design frameworks. 
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5.1.4 Critical Buckling Load from Analytical Parabolic Path Solution 

This method approximates buckling behavior by assuming the midspan twist and lateral 

deflection follow a parabolic arc, deriving Pcr through energy minimization. This method 

uses a more complex expression that incorporates an arbitrary geometric parameter a to 

account for the shape of the parabolic path of deflection. This formulation often produced 

slightly higher or lower values than the circular path solution, depending on the value of a, 

which in this study was constrained to a realistic positive value. 

• Considering small value of 𝜙 close to 0: 

𝐹𝑜𝑟 ϕ → 0+

{
 

 
𝑠𝑖𝑛𝜙 = 𝜙
𝑐𝑜𝑠𝜙 = 1

𝑠𝑖𝑛(2𝜙) = 2𝜙

𝑐𝑜𝑠(4𝜙) = 1 − 2𝑠𝑖𝑛2(2𝜙) = 1 − 2 ∗ (2𝜙)2 = 1 − 8𝜙2}
 

 
 (5.19) 

𝐹𝑜𝑟 ϕ → 0−

{
 

 
𝑠𝑖𝑛(−𝜙) = −𝜙

𝑐𝑜𝑠(−𝜙) = 1

𝑠𝑖𝑛(−2𝜙) = −2𝜙

𝑐𝑜𝑠(−4𝜙) = 1 − 2𝑠𝑖𝑛2(−2𝜙) = 1 − 2 ∗ (−2𝜙)2 = 1 − 8𝜙2}
 

 

 (5.20) 

• Substituting Equations 5.19 and 5.20 into the two solutions P1 in Equation 3.47 and P2 

in Equation 3.48 respectively, the critical buckling load will be: 

⟹𝑃𝑐𝑟 =
−𝑎ℎ2𝑘𝑢 − 8𝑎𝑘𝜙 + ℎ𝑘𝑢 +√𝑎

2ℎ4𝑘𝑢
2 + 16𝑎2ℎ2𝑘𝜙𝑘𝑢 + 64𝑎

2𝑘𝜙
2 − 2𝑎ℎ3𝑘𝑢

2 + 16𝑎ℎ𝑘𝜙𝑘𝑢 + ℎ
2𝑘𝑢

2

4𝑎ℎ
 (5.21)

 

Here the expression for the critical buckling load based on the parabolic deformation path, 

in addition to the lateral bending stiffness and torsional stiffness parameters, depends on 

the height of the cross-section, h, and the coefficient of the parabolic path of deformation, 

a, as shown in Equation 5.21. Although the expression depends on only four parameters, 

it is much longer and complicated than the one from the circular path. 

To find comparable value of the critical load with the numerical solution an appropriate 

value of the coefficient, a, should be chosen. The determination of this coefficient is 

discussed in Section 5.1.7. 
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5.1.5 Comparison of Critical Buckling Load for Various IPE Sections 

To demonstrate the influence of cross-sectional properties on the lateral-torsional critical 

buckling capacity of beams, the critical buckling loads for various IPE sections at a fixed 

span length of 4.0 m were computed using the Eurocode, numerical and analytical circular 

path methods. The results are summarized in Table 5.2. 

Table 5.2. Critical buckling loads of different IPE profiles for 4 m beam span. 

Section 

Critical Buckling Loads for 4 m Span 
(kN) 

Difference (%) 

Eurocode Numerical 
Circular 
Path 

Numerical and 
Eurocode 

Numerical and 
Circular Path 

IPE 120 9.155 10.377 21.181 11.776 104.119 

IPE 160 20.795 23.482 48.113 11.441 104.894 

IPE 200 41.813 47.103 96.741 11.230 105.381 

IPE 240 80.497 90.667 186.24 11.217 105.411 

IPE 270 108.768 122.503 251.65 11.212 105.423 

IPE 300 146.241 164.697 338.35 11.206 105.438 

 

As shown in Table 5.2, all three methods show a consistent trend: the critical buckling load 

increases with the size of the IPE section. For example, for the IPE 120 section, the 

Eurocode predicts a critical load of 9.155 kN, increasing to 146.241 kN for IPE 300 section, 

demonstrating a nearly sixteen-fold increase in the critical buckling load due to the 

enhanced section properties. This is primarily related to the increased stiffness parameters, 

especially the second moments of area, the torsional constant, and the warping constant, 

as the section depth increases. These parameters directly affect both bending and torsional 

resistance, thus contributing to a higher resistance against LTB.  

The Eurocode-based predictions are the lowest among all methods as shown in Table 5.2. 

For example, for the IPE 200 section, the Eurocode predicts a critical load of 41.813 kN, 

47.103 kN for the numerical solution and 96.741 kN for the analytical solution based on 

assumed circular deformation path, reflecting the code's inherent safety factors and design 

conservatism. 

The numerical critical load results from OpenSeesPy are consistently higher than the 

Eurocode values. When examining the closeness of the Eurocode and numerical solutions, 

a clear pattern emerges that the difference between the two shows very small decrease with 
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increasing section size. The deviation from the numerical solution across all section sizes 

is around 12%. 

The analytical solution based on circular deformation path produce even higher estimates 

of the critical load. This indicates that while the analytical models are more physically 

descriptive than the Eurocode, they still reflect idealized deformation paths and omit 

certain parameters, like warping stiffness, present in real systems. In addition, enforcing 

some kinematics by forcing the structure to take a path that it does not want to take 

generates artificial stiffening leading to overestimates. 

In contrast to the closeness of the Eurocode and numerical solutions, the critical loads 

from the analytical circular deformation path solution are consistently higher than the 

numerical critical load results from OpenSeesPy and they show a small increase in deviation 

as the section size increases. The deviation from the numerical solution across all section 

sizes is around 105%. 

In summary, as the IPE section increases, all three methods show a rise in the critical 

buckling load, confirming that stiffness of the sections play a critical role in resisting LTB. 

Although the discrepancy is consistent for all sections, the theoretically insightful analytical 

circular path method yields very high critical buckling load predictions than the numerical 

method, around 105% as shown in Table 5.2, and it can be concluded that the analytical 

method based on circular path is not a good predictor of the critical buckling load. The 

numerical approach via OpenSeesPy balances realism and computational accuracy, while 

the Eurocode offers a practical and safe design estimate. 

The critical load estimate from the parabolic deformation path is not shown here because 

it depends on the coefficient a, not yet determined, in addition to other geometric and 

stiffness parameters, as shown in Equation 5.21. The determination of the coefficient a is 

discussed in Section 5.2. 
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5.1.6 Comparison of Critical Buckling Load for Various Beam Spans 

To demonstrate the influence of span length on the lateral-torsional critical buckling 

capacity of beams, the critical buckling loads for various spans for IPE 200 profile were 

computed using the Eurocode, numerical and analytical circular path methods. The results 

are summarized in Table 5.3. 

Table 5.3. Critical buckling loads of IPE 200 profile beams of various spans. 

Span (m) 

Critical Buckling Loads for IPE 200 
(kN) 

Difference (%) 

Eurocode Numerical 
Circular 
Path 

Numerical 
and Eurocode 

Numerical and 
Circular Path 

2.0 167.253 188.333 386.963 11.193 105.467 

3.0 74.335 83.727 171.983 11.218 105.410 

4.0 41.813 47.103 96.741 11.230 105.381 

5.0 26.760 30.148 61.914 11.236 105.367 

6.0 18.584 20.937 42.996 11.240 105.358 

 

All three methods show that the critical buckling load decreases as the span length of the 

beam increases as shown in Table 5.3. For example, for span of 2.0 m, the analytical circular 

path solution predicts a critical load of 386.963 kN which decreases to 42.996 kN for a 

span length of 6.0 m. This is primarily related to increased lateral instability because of 

longer lateraly unsupported span reducing the stiffnesses of the beam for LTB.  

The Eurocode-based predictions are the lowest among all methods. When examining the 

closeness of the Eurocode and numerical solutions, a clear pattern emerges that the 

difference between the two follows a nearly parallel trend remaining about 11% as shown 

in Table 5.3. 

In contrast, the critical loads from analytical solutions based on circular deformation path 

are consistently higher than the numerical values following a nearly parallel trend. When 

examining their closeness, a clear pattern emerges that the difference between the two is 

about 105%, which is very large, as shown in Table 5.3. 

In summary, as the span length increases, all three methods show a drop in the critical 

buckling load, confirming that span length of the beam affect the stiffness hence the LTB 

resistance. Once again it is shown that the analytical method based on circular deformation 

path is not a good predictor of the critical buckling load as the difference with the numerical 

method in critical load estmation is very large which is about 105% as shown in Table 5.3. 
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5.2 DETERMINATION OF THE COEFFICIENT OF PARABOLIC PATH SOLUTION 

As described in Sections 5.1.5 and 5.1.6, the analytical solution based on circular 

deformation path is not a good predictor of the critical buckling load, therefore it is 

necessary to find the coefficient, a, for the alternative analytical solution based on parabolic 

deformation path by using the critical buckling load expression for parabolic path shown 

in Equation 5.21 to match the critical buckling loads from the numerical solution shown in 

Table 5.2 and Table 5.3. 

To demonstrate the influence of cross-sectional properties on the value of the coefficient, 

a, of the parabolic path, the values of the coefficient for various IPE sections at a fixed 

span length of 4.0 m are computed by trial and error. The results are summarized in Table 

5.4. 

Table 5.4. Coefficient, a, of different IPE sections for 4.0 m beam span. 

Section h (mm) 𝒌𝒖 (N/mm) 𝒌𝝓 (Nmm) a (1/mm) 

IPE 120 120 41.505 1351200 0.00187 

IPE 160 160 102.465 2824000 0.00186 

IPE 200 200 213.60 5476800 0.00169 

IPE 240 240 425.40 10192000 0.00143 

IPE 270 270 629.85 12568000 0.00110 

IPE 300 300 905.70 15800000 0.000695 

 

The value of the coefficient, a, for various spans of IPE 200 profile are computed by trial 

and error to demonstrate the influence of the span length on the value of the coefficient. 

The results are summarized in Table 5.5. 

Table 5.5. Coefficient, a, for IPE 200 profile beams of various spans. 

L (mm) h (mm) 𝒌𝒖 (N/mm) 𝒌𝝓 (Nmm) a (1/mm) 

2000 200 1708.8 10953600 0.00069 

3000 200 506.311 7302400 0.00167 

4000 200 213.60 5476800 0.00169 

5000 200 109.363 4381440 0.001524 

6000 200 63.289 3651200 0.00135 
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Calculating the critical load for the parabolic path using Equation 5.21 with the coefficients, 

a, from Table 5.4 and Table 5.5 gives the same critical buckling loads as the ones from the 

numerical solution shown in Table 5.2 and 5.3 respectively. 

5.3 COMPARISON OF POST-BUCKLING RESPONSE 

The two analytical methods based on two distinct assumed deformation paths predict an 

approximate LTB response of the simply-supported IPE-beam under the given loading 

and boundary conditions. 

The OpenSeesPy simulation provide detailed, nonlinear results for LTB of steel IPE 

sections under various lengths and section sizes. The simulations capture the critical 

buckling load as well as the associated lateral deflection, torsional twist, and vertical 

deflection under applied loads. 

5.3.1 Comparison of Post-Buckling Response for Various IPE Sections 

To demonstrate the influence of cross-sectional properties on the post-buckling response 

of beams, the deflection and torsional responses for gradually increasing load considering 

various IPE sections at a fixed span length of 4.0 meters are computed using the analytical 

methods based on assumed deformation paths and the numerical method. The results are 

shown in plots of load vs deflection, load vs twist and deformed shapes. 

For the analytical solution based on the parabolic path assumption, the coefficient, a, is 

calculated applying the critical buckling load expression shown in Equation 5.21 to match 

the critical buckling load from the numerical method. The values of a used in the plots 

below are shown in Table 5.4. 
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(a)  Applied Load vs. Lateral Deflection.  The equilibrium paths showing the lateral 

deflection for gradually increasing midspan point load for six IPE profiles, with smaller 

section of IPE 120 upto IPE 300 section, for a simply-supported beam of length 4.0 meters 

are shown in Figures 5.1 to 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Applied Load vs. Lateral Deflection for IPE 120 Profile with Span of 4.0 m. 

 

Figure 5.2. Applied Load vs. Lateral Deflection for IPE 160 Profile with Span of 4.0 m. 
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Figure 5.3. Applied Load vs. Lateral Deflection for IPE 200 Profile with Span of 4.0 m. 

Figure 5.4. Applied Load vs. Lateral Deflection for IPE 240 Profile with Span of 4.0 m. 
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The applied load vs. lateral deflection plots from the analytical solution based on circular 

deformation paths, shown by the blue lines in Figures 5.1 to 5.6, exhibit a subcritical 

response in the post-buckling region, showing softening where there is an increase in 

Figure 5.5. Applied Load vs. Lateral Deflection for IPE 270 Profile with Span of 4.0 m. 

Figure 5.6. Applied Load vs. Lateral Deflection for IPE 300 Profile with Span of 4.0 m. 
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displacement with decreasing applied load. Both the critical load and the post-buckling 

response are very different from the numerical solution for all section sizes. 

In contrast, the ones from the analytical solution based on parabolic deformation path and 

the numerical simulation, shown by the red and green lines respectively in Figures 5.1 to 

5.6, display supercritical post-buckling response, showing hardening where there is an 

increase in displacement with increasing applied load, for all sections. The slope of the 

post-buckling response increases with section size. For example, for IPE 120 and IPE 160 

sections the post-buckling response is nearly horizontal as shown in Figures 5.1 and 5.2, 

whereas for IPE 270 and IPE 300 sections the slope becomes steep as shown in Figures 

5.5 and 5.6.  

For smaller sections, although the post-buckling response from the parabolic deformation 

path has gentle slope, initially it is analogous to the numerical solution with similar critical 

load. Initially the post-buckling response from the parabolic deformation path solution gets 

closer to the numerical solution as the section size increases from IPE 120 to IPE 240 

profile as shown in Figures 5.1 to 5.4. But further increase in the section size increases the 

difference between the numerical and parabolic path solutions as shown in Figures 5.5 and 

5.6 for IPE 270 and IPE 300 sections, even though they have similar critical load. 
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(b)  Applied Load vs. Torsional Twist.  The equilibrium paths showing the torsional 

twist for gradually increasing midspan point load for six IPE profiles, with smaller section 

of IPE 120 upto IPE 300 section, for a simply-supported beam of length 4.0 meters are 

shown in Figures 5.7 to 5.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Applied Load vs. Torsional Twist for IPE 120 Profile with Span of 4.0 m. 

Figure 5.8. Applied Load vs. Torsional Twist for IPE 160 Profile with Span of 4.0 m. 
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Figure 5.9. Applied Load vs. Torsional Twist for IPE 200 Profile with Span of 4.0 m. 

Figure 5.10. Applied Load vs. Torsional Twist for IPE 240 Profile with Span of 4.0 m. 



Wendwesen Fekede 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Like the discussion in (a) for the applied load vs. lateral deflection plots, the applied load 

vs. torsional twist plots from the analytical solution based on circular deformation paths, 

shown by the blue lines in Figures 5.7 to 5.12, exhibit a subcritical response in the post-

buckling region. Both the critical load and the post-buckling response are very different 

from the numerical solution for all section sizes because the formulation based on circular 

Figure 5.11. Applied Load vs. Torsional Twist for IPE 270 Profile with Span of 4.0 m. 

Figure 5.12. Applied Load vs. Torsional Twist for IPE 300 Profile with Span of 4.0 m. 
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deformation path assumption is not a good predictor of critical buckling load than the 

parabolic one. 

In contrast, the plots from the analytical solution based on parabolic deformation path and 

the numerical simulation, shown by the red and green lines respectively in Figures 5.7 to 

5.12, display supercritical post-buckling response.  

From the figures it is visible that the post-buckling response from the parabolic 

deformation path solution gets closer to the numerical solution as the section size increases 

from IPE 120 to IPE 200 as shown in Figures 5.7 to 5.9. For IPE 200 section the numerical 

and the parabolic path solutions have better matching as shown in Figure 5.9. Finally for 

IPE 240 to IPE 300 profiles, the post-buckling behavior ends up above the numerical 

solution with an increasing gap for larger twist, though they have similar critical buckling 

load and initial post-buckling response, as shown in Figures 5.10 to 5.12. 
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(c)  Applied Load vs. Vertical Deflection.  The equilibrium paths showing the vertical 

deflection for gradually increasing midspan point load for six IPE profiles, with smaller 

section of IPE 120 upto IPE 300 section, for a simply-supported beam of length 4.0 meters 

are shown in Figures 5.13 to 5.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Applied Load vs. Vertical Deflection for IPE 120 Profile with Span of 4.0 m. 

Figure 5.14. Applied Load vs. Vertical Deflection for IPE 160 Profile with Span of 4.0 m. 
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Figure 5.15. Applied Load vs. Vertical Deflection for IPE 200 Profile with Span of 4.0 m. 

Figure 5.16. Applied Load vs. Vertical Deflection for IPE 240 Profile with Span of 4.0 m. 
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As shown by the blue lines in Figures 5.13 to 5.18, the applied load vs. vertical deflection 

plots from the analytical solution based on circular deformation path shows softening in 

the post-buckling region, with very different critical load and post-buckling response from 

the numerical solution, for all section sizes, while the ones from the analytical solution 

Figure 5.17. Applied Load vs. Vertical Deflection for IPE 270 Profile with Span of 4.0 m. 

Figure 5.18. Applied Load vs. Vertical Deflection for IPE 300 Profile with Span of 4.0 m. 
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based on parabolic deformation path and the numerical simulation, shown by the red and 

green lines respectively, display hardening. 

The slope of the post-buckling response increases with section size for the parabolic path 

solution. For example, for IPE 120 and IPE 160 sections the post-buckling response is 

nearly horizontal as shown in Figures 5.13 and 5.14, whereas for IPE 270 and IPE 300 

sections the slope becomes steeper as shown in Figures 5.17 and 5.18.  

The post-buckling response from the parabolic deformation path solution gets closer to 

the numerical solution as the section size increases from IPE 120 to IPE 270 profile as 

shown in Figures 5.13 to 5.17. But further increase in the section size increases the 

difference between the numerical and parabolic path solutions as shown in Figures 5.18 for 

IPE 300 section, even though the critical load is the same. 

Moreover, note that the load-deflection curves in the post-buckling region of the analytical 

solution based on parabolic deformation path is below the numerical solution for smaller 

to medium section sizes, as shown in Figures 5.13 to 5.16 for IPE 120 to IPE 240 profiles, 

and is above the numerical solution for larger profiles, as shown in Figures 5.17 and 5.18 

for IPE 270 and IPE 300 sections. 
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(d)  Deformed Shapes (Vertical vs. Lateral Deflection).  The deformed shapes showing 

the plots of the midspan vertical deflections vs. midspan lateral deflections for six IPE 

profiles, with smaller section of IPE 120 upto IPE 300 section, for a simply-supported 

beam of length 4.0 meters are shown in Figures 5.19 to 5.24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19. Vertical vs. Lateral Deflection for IPE 120 Profile with Span of 4.0 m. 

Figure 5.20. Vertical vs. Lateral Deflection for IPE 160 Profile with Span of 4.0 m. 
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Figure 5.21. Vertical vs. Lateral Deflection for IPE 200 Profile with Span of 4.0 m. 

Figure 5.22. Vertical vs. Lateral Deflection for IPE 240 Profile with Span of 4.0 m. 
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Figure 5.23. Vertical vs. Lateral Deflection for IPE 270 Profile with Span of 4.0 m. 

Figure 5.24. Vertical vs. Lateral Deflection for IPE 300 Profile with Span of 4.0 m. 
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The deformed shapes, showing plot of vertical deflection vs lateral deflection, for the 

analytical method based on the circular deformation path completely disagree with the 

numerical solutions for all section sizes, even though they are qualitatively similar, as shown 

in Figures 5.19 to Figure 5.24.  

The agreement between the deformed shapes from the analytical method based on the 

parabolic deformation path with the numerical one is different across different sections. 

As the section size increases from IPE 120 to IPE 240 profile the deformed shapes from 

the parabolic path get closer to the numerical deformed shapes as shown in Figures 5.19 

to 5.22. For IPE 240 section the numerical and the parabolic path deformed shapes have 

better initial matching in the post-buckling region as shown in Figure 5.22. This matching 

in the deformed shapes doesn’t exist for IPE 270 and IPE 300 profiles as shown in Figures 

5.23 and 5.24.  
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5.3.2 Comparison of Post-Buckling Response for Various Beam Spans 

To demonstrate the influence of span length on the post-buckling response of beams, the 

deflection and torsional responses for gradually increasing load considering various spans 

for IPE 200 profile are computed using the analytical methods based on assumed 

deformation paths and the numerical method. The results are shown in plots of load vs 

deflection, load vs twist and deformed shapes.  

For the analytical solution based on the parabolic path assumption, the coefficient, a, is 

calculated using Equation 5.22 derived in the previous section and the values of a used in 

the plots below are shown in Table 5.5. 

(a)  Applied Load vs. Lateral Deflection.  The equilibrium paths showing the lateral 

deflection for gradually increasing midspan point load for a simply-supported steel IPE 200 

profile beam of span length from 2.0 m to 6.0 m are shown in Figures 5.25 to 5.29. 

 

 

 

 

 

 

 

 

Figure 5.25. Applied Load vs. Lateral Deflection for IPE 200 Profile with Span of 2.0 m. 
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Figure 5.26. Applied Load vs. Lateral Deflection for IPE 200 Profile with Span of 3.0 m. 

Figure 5.27. Applied Load vs. Lateral Deflection for IPE 200 Profile with Span of 4.0 m. 
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The applied load vs. lateral deflection plots from the analytical solution based on circular 

deformation paths, shown by the blue lines in Figures 5.25 to 5.29, exhibit a subcritical 

response in the post-buckling region. Both the critical load and the post-buckling response 

are very different from the numerical solution for all beam spans. 

Figure 5.28. Applied Load vs. Lateral Deflection for IPE 200 Profile with Span of 5.0 m. 

Figure 5.29. Applied Load vs. Lateral Deflection for IPE 200 Profile with Span of 6.0 m. 
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In contrast, the ones from the analytical solution based on parabolic deformation path and 

the numerical simulation, shown by the red and green lines respectively in Figures 5.25 to 

5.29, display supercritical post-buckling response for all sections. The slope of the post-

buckling response decreases with increasing span length. For example, for beam span of 

2.0 m the post-buckling response has steep slope as shown in Figures 5.25, whereas for 

beam spans of 5.0 m and 6.0 m the slope becomes gentle and nearly horizontal as shown 

in Figures 5.28 and 5.29.  

For larger spans, although the post-buckling response from the parabolic deformation path 

has gentle slope, initially it is analogous to the numerical solution with similar critical load 

as shown in Figures 5.27, 5.28 and 5.29 for beam spans of 4.0 m, 5.0 m and 6.0 m 

respectively. But for smaller beam spans the gap between the numerical and parabolic path 

increases for large lateral deflection as shown in Figures 5.25 for beam span of 2.0 m, even 

though they have similar critical load. For IPE 200 beam with a span of 3.0 m the numerical 

and the parabolic path lateral deflection responses have better initial matching in the post-

buckling region as shown in Figure 5.26. 
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(b)  Applied Load vs. Torsional Twist.  The equilibrium paths showing the torsional 

twist for gradually increasing midspan point load for a simply-supported steel IPE 200 

profile beam of span length from 2.0 m to 6.0 m are shown in Figures 5.30 to 5.34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30. Applied Load vs. Torsional Twist for IPE 200 Profile with Span of 2.0 m. 

Figure 5.31. Applied Load vs. Torsional Twist for IPE 200 Profile with Span of 3.0 m. 
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Figure 5.32. Applied Load vs. Torsional Twist for IPE 200 Profile with Span of 4.0 m. 

Figure 5.33. Applied Load vs. Torsional Twist for IPE 200 Profile with Span of 5.0 m. 
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Like the discussion in (a) for the applied load vs. lateral deflection plots, the applied load 

vs. torsional twist plots from the analytical solution based on circular deformation paths, 

shown by the blue lines in Figures 5.30 to 5.34, exhibit a subcritical response in the post-

buckling region. Both the critical load and the post-buckling response are very different 

from the numerical solution for all beam spans 

In contrast, the plots from the analytical solution based on parabolic deformation path and 

the numerical simulation, shown by the red and green lines respectively in Figures 5.30 to 

5.34, display supercritical post-buckling response.  

From Figures 5.30 and 5.31 it is visible that the post-buckling response from the parabolic 

deformation path solution starts above and ends up below the numerical solution by slowly 

changing its slope from steep to gentler one as the beam span increases from 3.0 m to 6.0 

m.  

The initial part of the post-buckling region is analogous to the numerical solution for all 

beam spans. Note in Figure 5.32 that the post-buckling response of the 4.0 m span beam 

from the parabolic path solution shows a very good agreement with the numerical solution. 

Finally for 5.0 m and 6.0 beam spans, the post-buckling behavior ends up below the 

numerical solution with an increasing gap for larger twist, nevertheless they have similar 

critical buckling load and initial post-buckling response, as shown in Figures 5.33 and 5.34. 

 

Figure 5.34. Applied Load vs. Torsional Twist for IPE 200 Profile with Span of 6.0 m. 
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(c)  Applied Load vs. Vertical Deflection.  The equilibrium paths showing the vertical 

deflection for gradually increasing midspan point load for a simply-supported steel IPE 200 

profile beam of span length from 2.0 m to 6.0 m are shown in Figures 5.35 to 5.39. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.35. Applied Load vs. Vertical Deflection for IPE 200 Profile with Span of 2.0 m. 

Figure 5.36. Applied Load vs. Vertical Deflection for IPE 200 Profile with Span of 3.0 m. 
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Figure 5.37. Applied Load vs. Vertical Deflection for IPE 200 Profile with Span of 4.0 m. 

Figure 5.38. Applied Load vs. Vertical Deflection for IPE 200 Profile with Span of 5.0 m. 
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As shown by the blue lines in Figures 5.35 to 5.39, the applied load vs. vertical deflection 

plots from the analytical solution based on circular deformation path shows softening in 

the post-buckling region, with very different critical load and post-buckling response from 

the numerical solution, for all section sizes, while the ones from the analytical solution 

based on parabolic deformation path and the numerical simulation, shown by the red and 

green lines respectively, display hardening. 

The slope of the post-buckling response decreases with increasing beam span for the 

parabolic path solution. For example, for 2.0 m beam span the post-buckling response has 

steep slope as shown in Figures 5.35, whereas for 5.0 m and 6.0 m beam spans the slope 

becomes nearly horizontal as shown in Figures 5.38 and 5.39 respectively.  

The initial part of the post-buckling response from the parabolic deformation path solution 

gets closer to the numerical solution as the beam span increases from 2.0 m to 3.0 m as 

shown in Figures 5.35 and 5.36. But further increase in the span length increases the 

difference between the numerical and parabolic path solutions as shown in Figures 5.38 

and 5.39 for 5.0 m and 6.0 m beam spans, even though they have similar critical load. 

Moreover, note that the load-deflection curves in the post-buckling region of the analytical 

solution based on parabolic deformation path is above the numerical solution for shorter 

beam span, as shown in Figures 5.35 for 2.0 m beam span, and is below the numerical 

solution for longer beam spans, as shown in Figures 5.38 and 5.39 for 5.0 m and 6.0 m 

beam spans respectively. 

Figure 5.39. Applied Load vs. Vertical Deflection for IPE 200 Profile with Span of 6.0 m. 
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(d)  Deformed Shapes (Vertical vs. Lateral Deflection).  The deformed shapes showing 

the plots of the midspan vertical deflections vs. midspan lateral deflections for IPE 200 

profile for a simply-supported beam of span length from 2.0 m to 6.0 m are shown in 

Figures 5.40 to 5.44. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.40. Vertical vs. Lateral Deflection for IPE 200 Profile with Span of 2.0 m. 

Figure 5.41. Vertical vs. Lateral Deflection for IPE 200 Profile with Span of 3.0 m. 
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Figure 5.42. Vertical vs. Lateral Deflection for IPE 200 Profile with Span of 4.0 m. 

Figure 5.43. Vertical vs. Lateral Deflection for IPE 200 Profile with Span of 5.0 m. 
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The deformed shapes, showing plot of vertical deflection vs lateral deflection, for the 

analytical method based on the circular deformation path completely disagree with the 

numerical solutions for all beam spans, even though they are qualitatively similar, as shown 

in Figures 5.40 to Figure 5.44.  

As shown in Figure 5.40, the deformed shape in the post-buckling region of the analytical 

parabolic deformation path solution is above the numerical one for 2.0 m beam span and 

it slowly goes down as the span length increases ending up below the numerical deformed 

shape for longer beam spans, as shown in Figures 5.42 to 5.44 for 4.0 m to 6.0 m beam 

spans. The agreement between the deformed shapes from the analytical method based on 

the parabolic deformation path with the numerical one is different across different beam 

spans. The deformed shapes from the parabolic path have better initial matching in the 

post-buckling region with the numerical deformed shapes for a beam span of 3.0 m as 

shown in Figures 5.41. This matching in the deformed shapes doesn’t exist for 2.0 m beam 

span as shown in Figures 5.40. 

 

Figure 5.44. Vertical vs. Lateral Deflection for IPE 200 Profile with Span of 6.0 m. 



 

 

6.CONCLUSIONS AND RECOMMENDATIONS 

6.1 SUMMARY AND CONCLUSIONS 

This thesis aimed to examine the LTB and post-buckling behavior of simply-supported 

steel IPE beams subjected to midspan point loads with the specific objective of finding 

appropriate analytical model and expression to show the post-buckling behavior. 

For this purpose, both analytical models based on assumed deformation paths (circular and 

parabolic) and nonlinear finite element analysis via OpenSeesPy are employed and a 

comprehensive comparison was made across various beam section sizes. 

The analytical methods are grounded in idealized energy-based assumptions of deformation 

and provide valuable insight into the sensitivity of buckling behavior to path-dependent 

deformation modes. While these methods are mathematically rigorous and offer useful 

insight into idealized deformation behavior, they do not fully account for factors such as 

boundary conditions, shear deformations, or cross-section distortion. 

Key conclusions include: 

(a)  Critical Load Prediction.  All methods (Eurocode, OpenSeesPy and Analytical 

methods) predict increasing critical buckling loads with increasing IPE section size due to 

higher stiffness. The Eurocode yields the most conservative estimates with about 11% 

difference from the numerical results. The critical load prediction from the circular 

deformation path model is very high with nearly 105% difference from the numerical 

results. Therefore, the parabolic model with calibrated coefficient to give the same estimate 

of the critical load as the numerical solution is developed. 

(b)  Post-Buckling Response Behavior.  The analytical circular path solution exhibits a 

consistent subcritical (softening) behavior, while the numerical solution and the analytical 

parabolic path solution show a supercritical response. This difference underscores the 

impact of the assumed deformation mode on capturing the real post-buckling path. 

The analytical solutions have more pronounced divergence from the numerical results as 

the beam goes further to the post-buckling region. These might be the effect of geometric 

nonlinearity and second-order deformations which become more significant factors that 
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are not fully captured by the simplified analytical formulations. Plots of applied load versus 

midspan lateral deflection and torsional twist highlight these trends.  

Overall based on the plot patterns the parabolic path shows better qualitative similarity 

with the numerical solution. For low to intermediate section sizes and longer spans the 

analytical lateral deflection estimates show better matching with the numerical solution in 

the early post-buckling region, while the vertical deflection estimates are analogous to the 

numerical solution in the early post-buckling region for medium section sizes and medium 

beam spans. The twist estimates show nearly perfect matching with the numerical solution 

for medium profiles and beam spans, although they show good agreement in the early post-

buckling region for all section sizes and all beam spans. 

(c)  Deformed Shape Agreement.  The deformed shape shown by lateral deflection-

vertical deflection plots from the analytical circular path model completely disagree with 

the numerical solutions for all section sizes and beam spans, even though they are 

qualitatively similar, while the ones from the parabolic deformation path show improved 

similarity with the numerical deformed shapes for smaller to medium section sizes and 

medium to longer beam spans initially in the post-buckling region. 

Overall, the study highlights the benefits and limitations of the simplified analytical models 

(circular and parabolic). While they offer valuable theoretical insight and quick estimations 

for initial buckling analysis of beams with higher stiffness, they must be used with caution, 

especially for small and flexible sections or detailed post-buckling analysis. 

6.2 FUTURE WORK RECOMMENDATIONS 

Based on the findings of this thesis, the following recommendations are proposed for 

future research and practical applications: 

• Refine the parabolic deformation path assumption: Although it aligns better with 

numerical results, the parabolic deformation path assumption could be enhanced by 

calibrating it with more advanced deformation shape functions. 

• Extend to other boundary conditions and loading types: This study focuses on simply-

supported beams under point load. Future studies should explore different boundary 

conditions and loading scenarios (e.g., distributed load) to assess the generality of the 

analytical models 

• Include warping effects into analytical models: The analytical formulations in this thesis 

neglect warping stiffness. Future work should include warping in the analytical models 

to improve accuracy. With further refinement for warping effects, it could serve as the 

basis for simplified design tools or charts for quick estimation of post-buckling 

behavior in engineering practice. 
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• Use experiments for validation: Although a comparison is done using numerical 

modelling in OpenSeesPy, experimental tests can be utilized in future studies to 

validate and refine simplified analytical approaches. 

• Investigate material nonlinearities: This study assumes linear-elastic behavior. 

Incorporating material nonlinearities in both numerical and analytical analysis could 

provide deeper insights into the ultimate load-carrying capacity and ductility of beams. 
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APPENDIX A. EQUATION OF PARABOLIC PATH 

Parabolic path of deflection shown by the red broken curve in Figure 3.5. 

𝑦 = 𝑎 ∙ 𝑧2 + 𝑏 ∙ 𝑧 + 𝑐 

Where: a, b and c are coefficients of the parabolic path of deflection. 

Considering the bottom of the undeflected beam cross-section along its vertical axis of 

symmetry as the origin and the first point on the deflection-path with coordinate (0, 0). 

Solving the deflection equation at the first point: 

𝑦(0, 0) = 0               ⟹           𝑎 ∙ 02 + 𝑏 ∙ 0 + 𝑐 = 0               ⟹           𝑐 = 0 

⟹ 𝑦 = 𝑎 ∙ 𝑧2 + 𝑏 ∙ 𝑧 

Since the arching point for the parabolic path occurs at the bottom of the undeformed 

beam section, it is possible to solve for the second coefficient b by taking derivative of y(z) 

and equating it to zero (i.e. Slope of y(z) is zero at the arching point). 

𝑑𝑦

𝑑𝑧
(0, 0) = 0 

𝑑𝑦

𝑑𝑧
=
𝑑

𝑑𝑧
(𝑎 ∙ 𝑧2 + 𝑏 ∙ 𝑧) = 2𝑎 ∙ 𝑧 + 𝑏 

𝑑𝑦

𝑑𝑧
(0, 0) = 0              ⟹           2𝑎 ∙ 0 + 𝑏 = 0              ⟹           𝑏 = 0 

⟹ 𝑦 = 𝑎 ∙ 𝑧2 
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APPENDIX B. NUMERICAL CODE IN OPENSEESPY 
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