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Seismic risk prioritisation schemes for reinforced concrete bridge portfolios

Andres Abarca , Ricardo Monteiro and Gerard J. O’Reilly

University School for Advanced Studies (IUSS) of Pavia, Pavia, Italy

ABSTRACT
A significant portion of the existing bridge inventory in Italy is decades old, requiring continuous
maintenance and safety assessment approaches. Recent collapses of existing reinforced concrete
bridges have piqued public interest, placing pressure on management agencies to define methodolo-
gies with which to prioritise asset maintenance and to effectively utilise their limited resources. When
looking for decision variables to perform this prioritisation, seismic risk assessment metrics, such as
average annual losses (AAL), are an appealing choice. However, obtaining this metric for a large bridge
inventory is technically challenging and requires large amounts of information that are seldom avail-
able, promoting the development of practical approaches that can predict the relative priority of
assets within a portfolio, based on processing simple indicators with acceptable accuracy. In this
research, a case study of 617 bridges from the Italian road network was assessed considering state-of-
the-art approaches to calculate total losses. The results were explored with data science techniques,
identifying the main features that drive the relative importance of bridges in terms of AAL and using
them as guidance to calibrate a simplified methodology, based on the recent Italian Guidelines for
Bridge Safety Assessment. The proposed AAL-based modifications demonstrate a notable improve-
ment in the definition of bridge assessment priorities, as well as providing further resolution in the
classification for more efficient decision making.
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1. Introduction

Bridges form an integral part of road networks and provide
crucial access between regions and cities, however, their
presence has become so normalised in modern times that
their existence and importance can go unnoticed to the
regular user. The bridge inventory of developed countries
can reach thousands of assets that have been built over sev-
eral decades by different administrations (Calvi et al., 2019),
creating a challenge for the institutions currently managing
these large portfolios of bridges for which there is
incomplete information about their current structural condi-
tion and limited resources available to upgrade or maintain
them.

In the case of Italy, a great portion of its current infra-
structure was built during a construction surge of freeways
that happened all over Europe in the 1960s (Calvi et al.,
2019). This coincided with a period in which the design
codes of bridges referred to much lighter vehicular loads
than the ones recommended for current traffic loading
(Iatsko & Nowak, 2021) and the consideration of extreme
demands from natural events, such as earthquakes, was still
in development. Furthermore, the longevity of the current
inventory, aided by the difficulties of management agencies
in providing proper maintenance, has led to a generalised
problem of deterioration that increases the vulnerability of

these structures, a condition that has become evident by the
number of bridge collapses in recent years.

Recent notable cases in Italy have attracted media atten-
tion to this problem, such as the collapse of the Morandi
Bridge (Viadotto Polcevera) in Genova in August 2018, but
many other collapses have happened in Italy with a non-
negligible effect on the road system. For example, a non-
exhaustive list of collapses collected from reports in the
media is presented in Table 1, where it can be observed that
several months or even years can pass for a bridge to be
reopened following its full or partial collapse. This consider-
ably interrupts the network for an extended period,
also impacting the local and wider community due to the
loss of a potentially key element of the overall infrastructure
system.

Considering the situation described above, there is a real
need for bridge management institutions to determine rapid
prioritisation methods that, based on the limited informa-
tion available about assets in the inventory, allow the identi-
fication of the assets requiring special attention in the form
of inspection, detailed analysis, monitoring and possible ret-
rofitting. Such prioritisation methodologies have been the
source of multiple research efforts worldwide. A summary is
available in a recent technical report by the United States
Department of Transportation (Chase, Adu-Gyamfi, Aktan,
& Minaie, 2016). It documents the evolution and application
of different bridge health indices used by bridge
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management agencies interested in preserving the condition
of bridge structures or prioritising the maintenance or
replacement projects within their bridge inventory.

Mostly, these methodologies rely on element-level infor-
mation of each bridge to assess its current state and service
level; however, they typically do not include aspects of resili-
ence and the importance of each asset on the overall net-
work that they form a part of. An example of such a
methodology that is regularly used in the United States,
Canada, Italy and Japan employs the Bridge Health Index or
Bridge Condition Index (Shepard & Johnson, 2001), given
by the ratio between the current condition of a bridge and
the one expected right after construction, measured in terms
of a weighted average of element-based indexes that record
deterioration from inspection information, thus providing
information on the current residual state of an asset com-
pared to a pristine structure.

Other recent examples include the Bridge Overall Priority
Indicator (Mohamed et al., 2019), developed for the Egyptian
context, and the Bridge Priority Index (Rashidi et al., 2015),
for the Australian context; both of which use an empirical
approach based on expert opinion to identify key indicators of
expected performance through inspection data. Other sources
can be classified as risk-based approaches, such as the
Integrated Bridge Index (Valenzuela, De Solminihac, &
Echaveguren, 2009), developed for the Chilean context, which
weighs factors such as seismic risk, hydraulic vulnerability and
strategic importance to aid in prioritization and rehabilitation
of bridges in a portfolio.

Recent Italian examples include the simplified index-
based methods developed by Pellegrino, Pipinato, and
Modena (2011) and D’Apuzzo et al. (2019), which are both
based on detailed inspection-level information to assess the
deterioration status of the bridges and combine it with the
importance of each asset to the overall network by incorpo-
rating an additional index based on road typology and traf-
fic flows. More recently, the Italian Superior Council of
Public Works, within the Ministry of Infrastructure and
Transport (MIT), issued a technical report with guidelines
on risk classification and management, safety assessment
and the monitoring of existing bridges (Consiglio Superiore
dei Lavori Publici, 2020), which has already become part of
the mandatory legislation for bridge management institu-
tions and concessionaries in Italy (Ministero delle
Infrastrutture e dei Trasporti, 2020). This document, which
will be referred to from this point forward as the 2020 MIT
Guidelines, intends to standardise the procedure with which

existing bridges in Italy are assessed at a large scale by a
multi-level and multi-component approach that classifies
bridges in risk categories via a combination of qualitative
metrics.

Among most of the sources that deal with the prioritisa-
tion of bridges in a portfolio, there are similarities about the
components that should be ideally included when determin-
ing the relative importance of assets and their urgency in
attention:

� Accounting for the demands deriving from multiple haz-
ards such as: traffic loads, flooding, earthquakes and
landslides.

� The overall properties of the assets, such as: structural
typology, dimensions, mechanical properties, cost of the
infrastructure and its relative importance to the oper-
ation of the road network.

� State of degradation, corrosion and overall expected per-
formance of the bridge components when subjected to
the considered hazards.

While these components are generally included in the
available proposals for simplified prioritisation in different
ways, there is a difficulty in assessing their relative import-
ance and, therefore, the way in which they are processed is
typically defined by expert opinion. When looking for an
established metric that allows the consideration of the entire
scope of the problem in a single value, average annual loss
(AAL) is a risk metric that has seen growing use within the
structural engineering community (O’Reilly & Calvi, 2019;
Shahnazaryan & O’Reilly, 2021), even being proposed as a tar-
get metric to be used in new methods for structural design
and assessment (Calvi, O’Reilly, & Andreotti, 2021). AAL, also
referred to in some sources as expected annual loss (EAL), is a
product of risk assessment that represents long-term expected
economic losses per year, averaged over many years, that are
produced by specific hazards of varying intensities and their
respective annual exceedance rates, or return periods.

In this paper, a seismic risk methodology is applied to a
case study of 617 bridges in the Italian province of Salerno to
determine prioritisation of assets based on AAL, which is then
used for two main purposes: as a benchmark to compare with
the results obtained using the recent 2020 MIT Guidelines and
as a possible guiding parameter to determine the relative
importance of each factor affecting the determination of prior-
ity, with a view to moving towards a more optimised but still
simple prioritisation approach.

Table 1. Bridge collapses reported in Italy since 2004.

# Region Province Bridge Name/Location Length (m) Collapse Date Re-opening Date

1 Friuli Venezia Giulia Pordenone Viadotto del Chiavalir 25.00 Dec-04 Jul-09
2 Liguria Genova Carasco 258.00 Oct-13 Apr-14
3 Sardinia Nuoro Oliena-Dorgali 130.00 Nov-13 Jan-20
4 Sicily Agrigento Lauricella-Petrulla 476.00 Jul-14 Mar-18
5 Lombardy Lecco Annone 56.00 Oct-16 Jul-19
6 Marche Ancona Ancona 45.00 Mar-17 Jun-18
7 Liguria Genova Viadotto Polcevera 1182.00 Aug-18 Aug-20
8 Liguria Savona Madonna del Monte 30.00 Nov-19 Feb-20
9 Toscana Massa-Carrara Albiano Magra 290.00 Apr-20 Mar-22
10 Piedmont Novara Romagnano Sesia 156.00 Oct-20 Aug-21
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2. Methodology

The methodology defined for this study, depicted graphic-
ally in Figure 1, initially consisted of creating a synthetic
case study, given by a portfolio of bridges with fully known
information located within an existing road network. This
case study was then used to apply detailed risk assessment
procedures, leading to the calculation of the AAL for each
asset, thus creating a benchmark with which to evaluate dif-
ferent prioritisation methodologies and the influence of
multiple parameters on the overall performance of the
inventory. A database containing 308 bridges from the
National Autonomous Roads Corporation ANAS (Azienda
Nazionale Autonoma delle Strade) inventory (Borzi et al.,
2015), collected and managed by the Eucentre Foundation,
was used to populate a model of the primary and secondary
road network of the Italian province of Salerno. The model
was built from information taken from OpenStreetMap
repositories (OpenStreetMap contributors, 2020), such as
connectivity, number of lanes, road typology and traffic
flow capacity.

Once the case study was defined, a probabilistic seismic
hazard analysis was carried out for the location of each
bridge to determine hazard curves specific to each site.
Furthermore, all bridges were grouped into four hazard
zones, where a conditional spectrum record selection was
carried out considering two possible soil conditions (soft
and stiff) to obtain ground motion record sets for each
zone. These sets of 30 bi-directional earthquake records
were conditioned on average spectral acceleration, AvgSa,
which is an intensity measure recently shown to be quite
advantageous when assessing multiple bridge structures
(Abarca, Monteiro, O’Reilly, Zuccolo, & Borzi, 2023) when
compared to more common intensity measures adopted in
previous studies in the field. AvgSa was defined for the

period range of 0.1s to 1.7s considering a spacing of 0.1s
and was used to condition the record selection for nine
return periods of ground shaking, ranging from 98 to
9975 years.

Numerical models were created for each bridge using the
BRITNEY modelling tool, developed by Borzi et al. (2015)
and were analysed using the ground motion record set cor-
responding to the location of each asset to perform non-lin-
ear time-history analysis (NLTHA). The NLTHA results
were then processed to determine fragility curves for the
collapse limit state of each case-study bridge in terms of
AvgSa, which differs from the original BRITNEY framework
that employed peak ground acceleration (PGA) as intensity
measure. These fragility curves were integrated with the haz-
ard curves of each site to obtain the annual probability of
collapse of each bridge.

To obtain a complete account of the AALs that can be
attributed to the collapse of each bridge due to seismic haz-
ard, both the direct replacement cost as well as the indirect
cost of the bridge should be considered. While the direct
cost can be taken as proportional to the deck area multi-
plied by an average construction cost value, the indirect
counterpart requires an analysis of the transportation net-
work to evaluate the economic loss that the users would
incur because of the disruption caused by the collapse of
each bridge. Once the total (direct and indirect) replacement
costs of each asset were calculated, they were combined
with the annual probability of collapse to determine an
expected AAL for each bridge, defining an AAL database
that can be used as a benchmark prioritisation metric.

This database was then explored through data science
methodologies, including a machine learning model, to gain
insights on how some of the simple features (e.g. span
length, structural typology, pier height, etc.) that are com-
monly available for each bridge can be used as indicators to

Figure 1. Methodology used to understand the implementation of the recent 2020 MIT Guidelines and explore improvement options.

STRUCTURE AND INFRASTRUCTURE ENGINEERING 3



approximate the AAL-based priority. Finally, a comparison
was made between the 2020 MIT Guidelines classification,
the AAL-based prioritisation and the insights obtained from
the database and the machine learning model, in order to
evaluate the 2020 MIT Guidelines and develop a more opti-
mised proposal with the same level of simplicity of imple-
mentation but with improved overall accuracy, when
compared with the AAL ranking.

3. Case study bridge inventory

3.1. Database description

As mentioned previously, a bridge database comprising 308
bridges from the National Autonomous Roads Corporation
ANAS (Azienda Nazionale Autonoma delle Strade) inven-
tory, collected and managed by the Eucentre Foundation,
was considered to create the case study for this research.
These bridges form a part of the Italian road network, and
their actual geographic location is scattered along the pri-
mary highway grid of Italy, as shown in Figure 2.

The information available in the database represents a
complete ‘as-built’ account of geometrical and structural
properties of the bridges, without consideration of observed
damage or deterioration, allowing detailed structural numer-
ical models of each asset to be created. Each asset in the
database is a reinforced concrete (RC) bridge with two or
more spans, a predominant configuration in the Italian road
network (Zelaschi et al., 2016). In terms of general dimen-
sions, the overall number of spans ranges from 2 to 36,
which translates to an overall bridge length range of 50m to
1250m. A large portion of the inventory is not straight, as
35% of the assets have curved decks on at least one of the
spans, which sometimes makes it difficult to use the typical
definition of longitudinal/transverse directions. The height

of piers ranges between 5m and 45m in the overall inventory
and it is typical to observe large variation of the pier height
within the same asset, leading sometimes to irregular dynamic
configurations within straight bridges. A more complete
description of the distributions of these bridge properties is
shown in Figure 3. In terms of static configuration, the vast
majority of the case-study assets have spans that are simply
supported upon the piers with thin elastomeric pads, and only
a small percentage has continuous deck and bearings that can
be either elastomeric or isolators.

In terms of pier sections, the inventory includes multiple
configurations, which sometimes change even within the
same asset. To provide some aggregated information regard-
ing the pier types of the inventory, three main pier types
were identified: single column (SC), wall (W) and multiple
column (MW) configurations, the distribution of which is
shown in Figure 4(a). It is important to note that the actual
pier cross sections might be composed of circular sections,
box sections, elliptical or many other kinds of geometrical
configurations. Nevertheless, the fragility analysis of each
asset was carried out on an element-by-element basis (i.e.
each bridge was specifically analysed with its respective pier
properties) thus this pier type illustration had no impact on
the fragility curve results.

The construction year was available for all assets, ranging
between 1953 and 2000, with most of them built during the
1960s and 1970s, as shown in Figure 4(d). Information on
the current state of deterioration of the assets was not avail-
able in the database. As is common for regular Italian
bridges of those decades, none of them are expected to have
been specifically designed to meet appropriate seismic
requirements, especially considering that the first national
seismic regulation in Italy that addressed the entire national
territory was instated in 2003 (Consiglio dei Ministri, 2003).

In general, the reinforcement percentages in the piers, both
in longitudinal (Asl/Ac) and transverse (Ast/Ac) directions, are
low in comparison to current design standards and are quite
similar across the different pier sections. This is atypical under
current design practices, however, both the reinforcement
ratios and the properties of the materials used for construction
are in line with the age of construction of the inventory.
Distributions for the mechanical properties of the materials are
shown in Figure 4(e) and (f). In terms of dynamic properties,
a structural model was created for each asset to determine the
modal periods in both orthogonal horizonal directions. Since,
for the case of bridges, the first mode does not typically
account for a significative percentage of the total modal mass,
an appropriate number of modes were evaluated for each asset
to include 85% of the modal mass in each direction. The dis-
tributions for the first modal period (T1) and the modal period
at which 85% of the modal mass is obtained (T85%) as shown
in Figure 5.

The intensity measure chosen to perform hazard and fragil-
ity calculations was average spectral acceleration (AvgSa), for
which the collective results of T1 and T85% were used to define
the period range. As shown in Figure 5, the selected range was
0.1 seconds to 1.7 seconds, which was defined as per O’Reilly
(2021) as 1.5 times the 84th percentile to account for periodFigure 2. Location of the 308 case-study assets in the ANAS bridge inventory.
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elongation of the first mode and 0.5 times the 16th percentile
to account for higher mode contributions of the T1 and T85%

periods, respectively, for the entire inventory.

3.2. Case study description

As shown in Figure 2, the bridges in the ANAS database are
scattered geographically all over the Italian territory and not

directly connected, therefore, their real location is not ideal
to define a case study, since the consideration of the collect-
ive and individual role of each asset in the road network
would be an unfeasible exercise. Ideally, if a case study of
bridges closely connected within the same territory were
available, it could be explored and fully analysed to repre-
sent a benchmark with which to evaluate the performance
of simplified prioritisation frameworks. For this reason, a

Figure 3. Distribution of general and geometrical properties of the bridge database.

Figure 4. Distribution of main material properties of the bridge database (SC: Single Column, MC: Multiple Columns, W: Wall, Asl: Area of longitudinal steel, Ast:
Area of transverse steel, Ac: gross area of the element).
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synthetic case study was created by taking the road network
of a region for which the location of bridges and road prop-
erties was known and assigning a bridge from the 308-asset
database to each location using a simple random sampling
scheme.

Note that this example does not correspond to the exact
real case study, in which the actual exposure inventory
would include bridges with more typologies and construc-
tion materials than the ones incorporated herein (only RC
bridges), even if the included typologies do represent an
important percentage of the Italian bridge inventory (Borzi
et al., 2015; Zelaschi et al., 2016). Furthermore, the limita-
tion of randomly placing the bridges in locations other than
the real ones, is minimised by the fact that, even when
placed in locations with different seismic hazard demands,
bridge design practices are not expected to have varied con-
siderably among the Italian territory for the construction
period of the bridges in the database (Borzi et al., 2015).
This is also reinforced by the aforementioned fact that the
first national seismic regulation in Italy that addressed the
entire national territory was instated in 2003 (Consiglio dei
Ministri, 2003), thus it is likely that bridges prior to this
year were not highly conditioned, design wise, by the seis-
mic hazard of the location where they were built. The sole
purpose of the case study created herein is to present and
evaluate the prioritization methodology hence to consider
the results from this synthetic case study as a benchmark
should not influence that objective.

The Salerno province was selected for having a transpor-
tation network that relies heavily on the vehicular road sys-
tem and a varying seismicity level. Information about the
road network of Salerno was taken from the OpenStreetMap
database (OpenStreetMap contributors, 2020), which com-
prises all roads within the highway, primary and secondary
systems, including 2929 nodes and 3086 links, of which 617
represent bridges. The centroid locations of the 158 munici-
palities in the Salerno province were used as traffic attrac-
tion zones (centroids) from which all trips were assumed to
occur to and from. The 308 bridges in the database were
therefore randomly assigned to the 617 possible locations of
bridges in the Salerno network using a sampling with
replacement scheme. Once the final distribution of assets in
the case study was defined, a transportation network model

was created using the software AequilibraE (www.aequili-
brae.com), an open-source Python and QGIS package to
perform transportation network analysis, to determine the
baseline traffic conditions that are fundamental to assess the
importance of each bridge in the network. A graphical rep-
resentation of the network model is shown in Figure 6.

A database containing travel pattern information for
work and study purposes performed in 2011 was taken from
the Italian Institute of Statistics (ISTAT, 2014) and used to
define origin-destination demands between the different
municipalities of Salerno. For the sake of simplicity and to
due to the need to delimitate the area of analysis, trips com-
ing and going outside of the borders of the case study
region are excluded from the analysis, which however will
impact the traffic assignment. Future improvements of the
framework may address this issue in a practical, feasible
manner. For the current exercise, only trips performed by
private car owners were considered since no information of
freight or public transportation was available. It is important
to note that the lack of information of trips performed by
freight and public transportation vehicles constitutes a limi-
tation of the current study, as those will have an important
contribution to the calculation of the indirect losses. While
this does not represent a conceptual aspect of the method-
ology (i.e. its formulation would not change), such informa-
tion should thus definitely be included in future research
and in real case studies.

In order to account for congestion in the network, previ-
ous research regarding Italian road characteristics (Maratini,
2008) was used to obtain the volume-delay function model-
ling parameters according to the commonly used BPR
model (Bureau of Public Roads, 1964) for the different road
types in the network, as shown in Table 2. Free flow speed
was taken as the speed limit reported for each road in the
OpenStreetMap database; while some studies (Zilske,
Neumann, & Nagel, 2011) modify the speed limit values to
accurately represent the free flow speed according to the
case study characteristics, this was not done in this study
since no precedent was found for the case study region and

Figure 5. Results for modal structural periods of the entire inventory and defin-
ition of AvgSa range.

Figure 6. Road network model for the case study region of Salerno built on
AequilibraE (www.aequilibrae.com) based on OpenStreetMap data.
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the implementation of the speed limit provided good results
during the validation stage, as will be demonstrated shortly.

A trip distribution based on the minimisation of travel
time of each user was carried out using a bi-conjugate
Frank-Wolfe algorithm (Mitradjieva & Lindberg, 2013) to
determine the baseline traffic conditions of the fully oper-
ational road network. The results in terms of trip duration
were compared with the corresponding values reported in
the census data to validate the model. As can be seen in
Figure 7, even though the model tended to predict longer
travelling times in comparison to the census data, there is
quite a good agreement for most of the trips overall. The
mismatch for longer travel times was expected since the
model does not include the entirety of roads in the network
(i.e. it excludes the local residential system). As such,
increased levels of congestion can occur artificially in the
model by having to distribute all of the traffic demands in a
reduced number of roads.

4. Seismic risk analysis

4.1. Seismic hazard and record selection

The Salerno province, as previously described, was selected
as the case study region partly because it has a varied seis-
mic hazard that ranges from low seismicity regions near the
coastline, to high seismicity areas near the Southern
Apennines Mountain range, which was the location of the
Mw 6.9 Irpinia earthquake in 1980, for example. This wide
range of seismicity represents an opportunity for this case
study, as it allows possible differences in the response of
bridges in different seismic demand areas to be investigated.
In terms of hazard curves, the SHARE hazard model
(Woessner et al., 2015), implemented in the OpenQuake
Engine (Silva, Crowley, Pagani, Monelli, & Pinho, 2014),
was used to determine the probability of exceedance of dif-
ferent levels of AvgSa for an investigation period of 50 years
at each bridge site. In terms of ground motion record selec-
tion, a conditional spectrum scheme (Lin, Haselton, &
Baker, 2013) was adopted using a modification that allows
the conditioning of the spectra for AvgSa (Kohrangi,
Bazzurro, Vamvatsikos, & Spillatura, 2017). The implemen-
tation of the record selection methodology used requires
results from a disaggregation analysis to determine the
mean magnitude and distance that principally drive the seis-
mic demands at each specific site.

However, given the large number of bridge locations, and
to minimise the computational burden of performing disag-
gregation at each location, all assets were assigned to four
hazard zones and two soil classes (i.e. soft and stiff soil dif-
ferentiated by a Vs,30 threshold of 360m/s) as illustrated in

Figure 8. Following this, a complete hazard disaggregation
analysis was carried out for the eight possible zone-soil
combinations. For each combination, sets of 30 bidirectional
ground motion records were selected from the NGA West-2
Strong-motion Database (Ancheta, et al., 2014) for nine
return periods ranging from 98 years to 9975 years and were
used for NLTHA, as described in Section 4.2.1. An example
set of the selected ground motion records is illustrated in
Figure 9.

4.2. Seismic risk

4.2.1. Fragility analysis
In this study, instead of seismically assessing inventories
using a taxonomy-based approach to account for the fragil-
ity of its assets, and taking advantage of having a complete
knowledge of the structural characteristics of all the ele-
ments in the case study, an element-based approach imple-
mented by Borzi et al. (2015) was adopted to evaluate the
seismic fragility of each bridge in the case study portfolio.
Since the focus of this study was not on the derivation of
fragility curves for bridges via novel structural modelling
and analysis approaches, but on devising prioritization
schemes based on risk results, the fragility assessment was
carried out adopting the BRITNEY analysis tool and corre-
sponding modelling and limit state definition criteria, as
presented in Borzi et al. (2015), with the only innovation
being the implementation of AvgSa as intensity measure for
the analysis. The tool creates finite element (FE) models for
carrying out NLTHA with OpenSees (McKenna, Scott, &
Fenves, 2010) and processes the results to characterise the
structural response of each bridge in its original, as-built
condition (i.e. no ageing effects are considered).

The model elements are either frame elements, elastic
for the deck and BeamWithHinges (Scott & Fenves, 2006) for
the pier segments and the transverse beams, respectively, or
zeroLength elements for deck connections and twoNodeLink
elements for bearing devices within super- to sub-structure con-
nections. Nonlinearity is modelled within both frame and
zeroLength elements. For this purpose, in the beamWithHinges
elements, the cross-section is discretised into fibres. RigidLink
elements are also used to model connection dimensions.
Uniaxial constitutive models employed for the fibre section of
inelastic elements are the Scott-Kent-Park concrete model (Kent
& Park, 1971) (Concrete01 in OpenSees) and the bilinear steel
model (Steel01 in OpenSees).

For the bearing supports and connections between the
deck, piers and abutments, available force-deformation laws in
OpenSees (e.g. Elastomeric, FlatSlider, FrictionPendulum) cover
the full spectrum of devices, both traditional and modern, typ-
ically found in the bridge stocks of Italy. The platform also
accounts for simple friction support between two surfaces sim-
ply supported, as well as monolithic connections. Furthermore,
the tool allows for great flexibility in geometrical definitions to
model bridges with complex layouts, such as having a curva-
ture, multiple decks sharing piers, Gerber joints, etc.

In this tool, structural deterioration interactions between
elements leading to collapse are not specifically accounted

Table 2. Volume-delay function parameters used for road network modelling.

Typology
Capacity

(vehicles/hour/lane)

BPR parameters

a b

Highway 1600 0.28 0.93
Primary 1400 0.25 1.13
Secondary 1400 0.25 1.13
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for in the models (i.e. elements will deform beyond the limit
response thresholds). However, local demand over capacity
ratios were calculated for piers and bearings and, depending
on the values of these ratios, damage states were later assigned
in the post-processing stage. Piers can fail because either
deformation capacity, in terms of chord-rotation, or shear cap-
acity has been exceeded. The shear span LV was taken equal to
the pier height L for single-stem cantilever piers, or in the lon-
gitudinal direction, and L/2 in the transverse direction of mul-
tiple stem piers or piers with monolithic deck connections.
The ultimate curvature was determined automatically from a
bilinear fit of a section moment-curvature analysis to deal with
general cross-section shapes and reinforcement layouts. In
terms of shear failure, given the brittle nature of the phenom-
enon, only a single threshold was defined and associated with
the collapse limit state, with the pier shear capacity calculated
according to the NTC 2008 equations (M.I.T., 2008).

To account for uncertainty in the capacity thresholds for
pier components, these were modelled as lognormal random

variables that were sampled every time an analysis was con-
ducted. The equations used in the definition of the pier
thresholds for chord rotation and shear, as well as the loga-
rithmic standard deviation used for the analyses, are pre-
sented in Table 3. Further detail on the choice of the
different formulations can be found in Borzi et al (2015).

Regarding the bearings, these can suffer from unseating
failure, involving the deck and the supporting sub-structure.
Bearings can fail due to excessive displacement demand,
from simply falling off the deck from the bearing seat, or
due to the full loss of support from the pier head. The first
condition detects a damage limit state, while the second a
collapse limit state. The displacement capacity of the bear-
ings was derived from the pier cap and bearing seat geom-
etry, or directly defined by the user, and was considered as
deterministically known.

To account for the bi-directional response under multi-
component seismic input, the local D/C ratios, yi, were
taken as the SRSS combination for the piers and bearings,

Figure 7. Road network model performance: (a) baseline traffic flows (line thickness is proportional to traffic flow), (b) trip duration comparison of census data
with baseline model results.

Figure 8. Seismic hazard of the case study region of Salerno: (a) hazard zones and soil sites (PGA values for a return period of 475 years are shown for reference),
(b) hazard curves for each hazard zones (dashed lines are soft soil results).
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respectively. For example, the local ratio for flexural deform-
ation at the collapse limit state was given in terms of the
responses and capacities in the longitudinal (L) and trans-
verse (T) directions as follows:

yihu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hiL
huiL

� �2

þ hiT
huiT

� �2
s

(1)

Each sample of demand over capacity ratios, was then used
to fit a lognormal distribution of performance for each inten-
sity measure level (IML), as shown in Figure 10. These distri-
butions were then used to evaluate the exceedance of specific
limit states and fit a lognormal fragility curve for each bridge.
The collapse limit state was focused on since it is the limit
state directly related to the complete loss of the bridge con-
nectivity, rendering a straightforward evaluation of indirect
losses possible. It is worth noting that more damage states
reflecting different levels of damage, and partial bridge closure
scenarios, could have been included in the analysis, adopting a
similar approach to the one employed by Mackie and

Stojadinovic (2006), who linked bridge functionality to lateral
and vertical residual capacity after an earthquake. While this
would have been possible, it was opted not to include it to
avoid the need for further assumptions related to bridge struc-
tural scheme-specific closure thresholds or socio-political deci-
sions, that are specific for the context of each assessed region.

In addition, since no objective information was readily
available from Italian sources on how additional limit states
would impact the interruption of the bridges (i.e. reduced
speed, allowable mass, partial lane closure, etc.); it was
decided to focus on the collapse limit state, for which a
complete interruption can be expected and information on
repair times was available. This decision constitutes a limita-
tion of the current study, since the inclusion of additional
limit states will alter the loss estimation and may change the
loss-based priority ranking that will be defined in the fol-
lowing sections. However, since all assets in the inventory
are being evaluated under the same rationale, the results
from this study are still valid from a methodological point
of view, within the defined scope and assumptions.

Note that this definition of collapse does not necessarily
imply a full and physical collapse of the bridge structure, as
in Table 1, but rather a code-oriented definition of incipient
or near collapse, essentially implying that the bridge is dam-
aged beyond the point where it may be considered usable,
hence interrupting the network. The results obtained for the
fragility curves of each element in the inventory are shown
in Figure 11, where the mean fragility curve is shown for
reference. This lognormal mean curve is represented by the
average of all the means of the synthetic bridge models, as
described in Equation 2, while the overall dispersion is given
by the square root of the sum of squares of the intra-bridge
dispersion and the inter-bridge dispersion, as follows:

ln llnYtax
¼ 1

N

XN
i¼1

ln llnYi
(2)

Figure 9. Conditional spectrum record selection: (a) disaggregation results for Site 1, (b) example of record selection for Site 1, 475-year return period, stiff soil.

Table 3. Capacity thresholds for pier segments (h and db are the section
height and longitudinal bar diameter, respectively) adapted from Borzi et al.
(2015).

Limit state Mechanism Median Deviation rln
Collapse Flexure hu ¼ hy þ /u � /y

� �
Lp 1� Lp

2Lv

� �
with: Lp ¼ 0:1Lv þ 0:17hþ 0:24 dbfyffiffiffi

fc
p

� � 0.4

Shear Vu ¼ Vc þ VN þ Vs
with: Vc ¼ k lDð Þ0:8Ac

ffiffiffi
fc

p
Vs ¼ Ast0:9 hfy
VN ¼ N 0:8h

2Lv

0.25

Lv : Shear length, hu : Ultimate rotation, /u: Ultimate curvature, Lp : Plastic
hinge length, Vu : Ultimate shear resistance, VN : Axial load contribution to
shear resistance, Vs : Transverse steel shear resistance, k lDð Þ: Ductility based
reduction factor as per NTC2008, Ac: Concrete shear resistance area, N: Axial
load, fc: conc. compression strength, fy: Steel yield strength, h: Section height,
db: Bar diameter, Vc : Concrete shear resistance.
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blnYtax
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2lnYintra

þ b2lnYinter

q
(3)

where:

blnYintra
¼ 1

N

XN
i¼1

blnYi
(4)

blnYinter
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ln llnYi

� ln llnYtax

� �2
N

s
(5)

4.2.2. Direct loss assessment
The calculation of direct losses associated with the collapse
limit state was carried out using the basic formulation from
the Pacific Earthquake Engineering Research Center’s
Performance-Based Earthquake Engineering (PEER PBEE)
framework (Porter, 2003). A very straightforward implemen-
tation of the formulation is possible by including only the
collapse limit state, where the product of the annual prob-
ability of exceedance of the limit state and the direct

replacement cost will result in the direct collapse-based
AAL, as follows:

AAL ¼ p LSCð Þ � eLjLSC ¼ APEC � eRC (6)

where:
LSC: Collapse Limit State
p LSCð Þ: probability of occurrence of LSC
eLjLSC: direct economic losses associated to LSC
APE, LSC: annual probability of exceedance of LSC
eRC: bridge replacement cost
The annual probability of exceedance (APE) for the limit

state was obtained by combining the fragility and hazard
curves obtained for each bridge in the case study, evaluating
the probability of exceedance in terms of the IML and the
respective annual probability of exceeding that IML. The
integration over the entire IML range results in the APE for
each asset, as shown in Figure 12(a). The replacement cost
for each bridge was taken as proportional to the deck area,
considering a generic cost per square meter of e930, taken
from the mean replacement cost per area obtained by
Perdomo et al. (Perdomo, Abarca, & Monteiro, 2020) for a
similar Italian bridge inventory. The results for direct col-
lapse-based AAL are show in Figure 12(b), where it can be
observed that higher values of loss are concentrated in the
areas with higher seismic hazard.

4.2.3. Indirect loss assessment
Indirect losses for the bridges were considered here as the
economic cost that the road network users incur from
delays and detours caused by the absence of the connection
that the bridge provides between network links. While
bridges have been frequently identified as one of the vulner-
able components when performing risk assessment of infra-
structure networks (Shinozuka, Murachi, Dong, Zhou, &
Orlikowski, 2003), their indirect loss component remains a
less explored challenge for researchers and practitioners.
The reason for this neglection comes in part because of the
technical challenge that the calculation represents, but also
because the burden of these indirect losses is shared by all
the users of the network over a long period of time, making
its calculation less feasible and attractive from the point of

Figure 10. Fragility assessment using BRITNEY: (a) numerical model created with BRITNEY subjected to bi-directional ground motion, (b) determination of probabil-
ity of exceedance per return period (adapted from Borzi et al., 2015).

Figure 11. Fragility curves for collapse limit state obtained for the 308 bridges
in the database.
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view of governments and management institutions, who are
mostly responsible for coping with the direct losses alone.
These issues are common for disaster management of public
infrastructure and have been underlined as a worldwide
challenge recently in the United Nations Office for Disaster
Risk Reduction’s Report on Infrastructure and Disaster
(United Nations Office for Disaster Risk Reduction, 2015).

In general, the same underlying concept and formulation
presented previously to calculate direct losses can be used to
determine the corresponding indirect ones; however, the dif-
ficulty lies in determining the indirect replacement cost
associated to the collapse of the bridge. To determine the
indirect replacement cost in this study, the previously
described road network model, used to determine the base-
line conditions of the network when all bridges are oper-
ational, was explored. Two main metrics were obtained
from the model: the vehicle hours travelled (VHT), and the
vehicle distance travelled (VDT), corresponding to the total
amount of time and distance, respectively, that all the users
in private cars travelling for work and study purposes in the
network experience daily. Both metrics were then combined
with median costs for automobile fuel efficiency, fuel prices
and hourly salary rates appropriate for the Salerno province
(ISTAT, 2020). This allowed the calculation of a baseline
daily cost (BDC) of operation of the road network in its
current configuration, as shown in Figure 13(a). It is
important to note that this baseline cost represents a lower
bound, since it does not include trips from freight of heavy
transportation vehicles, as discussed in Section 3.2.

Subsequently, the road network was modified by assum-
ing the collapse of each bridge in the network, removing the
associated link in the model and rerunning the daily oper-
ation cost with the modified network configuration to deter-
mine a Modified Daily Cost (MDC) associated with the
collapse of each bridge, as shown in Figure 13(b). The total
indirect cost of each bridge was then calculated as the dif-
ference between the BDC and the MDC multiplied by the
repair time in days assumed for each bridge. The computa-
tion of the repair time to use for each calculation

represented another challenge. In general, the repair time of
bridges varies widely from one case to another, driven
mainly by economic and political decisions specific to each
case.

For example, following the collapse of the Annone bridge
in 2016 (Table 1), it took 33months to reopen, while the
much larger Viadotto Polcevera (Morandi) bridge that col-
lapsed in 2018 took 24months to reopen, mainly driven by
the widespread media coverage of the collapse and relative
importance of both bridges to their respective communities.
Previous research on this matter relied on repair time mod-
els where a probabilistic time is described by some function
specific to each country or region, mainly defined through
expert opinion. Median repair times used in previous
research range from 190 days (Shinozuka et al., 2003) to
450 days (Kilanitis & Sextos, 2018). In this study, the data
from the 10 recent collapses in Italy shown in Table 1 was
used to fit the lognormal distribution shown in Figure 14
and the median value of 710 days was found and used as a
deterministic value for all elements in the case study.

The results for indirect replacement cost and indirect
AALs are shown in Figure 15, where it can be seen that the
indirect losses were concentrated near the coast of Salerno
where the traffic is generally higher, even though the seismic
hazard in this area was relatively low. This outcome can be
seen as indicative that the monetary value that is incurred
by the interruption of points of the road network for
extended periods of time outweighs the lower seismic haz-
ard for this case. It is important to note that some of the
bridges in the case study that were located near the edges of
the Salerno region did not produce indirect loss results
when applying this methodology since their collapse resulted
in no alternative paths, causing the complete disconnection
of some of the centroids. This is a limitation of the applied
methodology since alternate routes are likely available when
considering neighbouring parts of the road network as well
as the residential roads that were excluded from the network
model. To avoid this issue in future research, it is possible
to either extend the network model beyond the limits of the

Figure 12. Results for direct loss assessment on the case study inventory: (a) annual probability of exceeding collapse limit state, (b) direct collapse-based average
annual losses in Euros.
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case study regions or account for the costs of cancelled trips;
however, for the purposes of the present study, the analysis
will focus herein on the remaining 531 bridges that did pro-
duce indirect loss results with the methodology used.

4.3. Total AAL results summary

Once both direct and indirect loss components were deter-
mined, the total collapse-based AALs were aggregated for each
bridge, resulting in the distribution shown in Figure 16(a).
Analysing the overall results, it is seen that the indirect losses
represent 78% of the total losses and that the overall losses
have a very similar spatial distribution to the one found for
the indirect losses alone, which is expected given that these are
much greater than the direct loss component. It is important
to note that, while the indirect loss component does seem to
have a much larger contribution to the overall losses than the
direct counterpart, the actual 78% estimate was obtained
through the application of the methodology previously pre-
sented, considering all its assumptions and limitations.
Changes in the repair time of assets, post-disaster travel

demands, accounting for more modes of transportation and
the inclusion of the residential road network will undoubtedly
have an impact on the results. However, it is outside the scope
of this study to provide a definitive estimate of the indirect
losses but rather to provide reference values for the purpose of
aiding bridge management institutions in decision-making.

It is also worth mentioning that a large portion of the
losses are concentrated in very few assets. For example,
from the histogram shown in Figure 16(b), only 9 bridges
have loss values that are greater than e100,000 but overall,
those bridges represent 42% of the total loss for the entire
inventory. Such distributions in loss are mostly caused by
the extreme values in indirect loss that were calculated for
bridges that have a high traffic flow and very long and inef-
fective alternate routes. This is an important finding since
bridge management agencies could use such indications to
put measures in place for these assets, such as having fast-
deploying temporary replacements ready to reduce the inter-
ruption duration and cost.

5. Machine learning prediction of AAL-based ranking

A supervised machine learning model was evaluated using the
case-study AAL results presented in Section 4 to assess the
feasibility of predicting losses based on limited data, and to
gain insights on the effect and relative importance of simple
bridge parameters on the prioritisation, defined by sorting
bridges based on their individual AAL results. For this case
study, the use of the machine learning modelling process was
not intended to create a model to be used on bridges outside
of the current case study, but rather to take advantage of its
capabilities to infer relationships between independent features
(i.e. simple bridge parameters and reference hazard values in
this case) and their impact on target values of interest (AAL
estimates). It is envisaged that these insights could be possibly
used in the future to guide improvement proposals on avail-
able prioritisation schemes and guidelines.

5.1. Model and database characteristics

A random forest regression model was chosen given its
recently demonstrated good performance when compared to

Figure 13. Methodology to determine Indirect Replacement Cost: (a) use of baseline traffic conditions to calculate a daily operational cost, (b) calculation of modi-
fied daily operational cost by removing bridge i-th.

Figure 14. Cumulative histogram and log-normal fit for repair time observa-
tions based on recent collapses in Italy.
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other machine learning algorithms for similar applications
(Mangalathu, Hwang, Choi, & Jeon, 2019), and the ability
of this algorithm to evaluate the relative importance of
each independent variable. This type of algorithm uses a
collection of decision trees built with bootstrapped sub-
sets of the main database, as depicted graphically in

Figure 17. Each tree is fitted to provide predictions based
on its sub-sample and all predictions provided by each
tree are later averaged to improve the predictive accuracy
and control overfitting. The relative importance of each
independent variable is calculated by measuring their effi-
ciency in decreasing the prediction uncertainty after each

Figure 16. Total average annual loss results: (a) total AAL results for case study inventory, (b) histogram of total AAL results.

Figure 15. Indirect loss results: (a) indirect replacement cost, (b) results for indirect average annual losses.

Figure 17. Schematic representation of random forest algorithm prediction methodology.
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split of the branches in the tree, averaged over all trees in
the forest.

This type of model, as with most supervised machine
learning models, uses a labelled dataset that has both its
independent variables (inputs) as well as its outcomes, and
progressively calibrates its own numerical properties to pro-
duce an inferred function that makes predictions about the
output values. In order to calibrate the model and evaluate
its performance on external data, the dataset is split into a
training set, used to fit the model properties, and a testing
set used to appraise the fitted properties. The primary
model settings were calibrated by running multiple param-
eter options. The values shown in Table 4 were chosen
based on their improved prediction performance evaluated
on the testing data set.

A database was assembled using the AAL results for each
bridge in the case study to train the random forest model.
For this purpose, the AAL representing the dependent vari-
able (target) and a vector of independent variables (or fea-
tures) was retrieved for each bridge structure. A set of six
features were used for each bridge: maximum span length,
maximum pier height, daily traffic flow, seismic intensity
measure level for a return period of 475 years, number of
spans and total replacement cost. Given that all these varia-
bles that will be processed by the algorithm have different
units and orders of magnitude, each was modified using a
minimum-maximum scaling process that transforms the
data of each feature by scaling the values within the 0 and 1
range. The resulting database consists of 531 data rows, one
for each bridge for which indirect loss results were available,
as discussed in Section 4.2.3. It is important to note that the
database created is relatively small for a regression problem,

therefore the reader is encouraged to keep in mind that the
model performance will be affected by this size limitation.

5.2. Model performance and insights

The evaluation of the regression model on the training and
testing sets is presented in Figure 18, along with the relative
feature importance, and a set of useful regression perform-
ance metrics is presented in Table 5. In general, the model
does not have an ideal prediction performance, which is to
be expected given the small amount of data points and fea-
tures used to attempt to predict a complex value such as
AAL, which depends on multiple variables that cannot be
included in this type of model in a straightforward manner.

In addition, in global terms, when considering the total
annual losses aggregated for the entire inventory, the model
exhibits a good performance, predicting a value that is 96%
of the actual calculated value, however, on the individual
asset side, the model tends to overpredict the loss values for
most of the elements in the case study, as seen in Figure 19.
The underprediction in the global results contrasts with the
overprediction on the individual side, however, this is
explained by the fact that the expected losses for the entire
inventory are governed by outlier assets that exhibit very
high values of AAL. When calculated, these AAL values are
not accurately predicted by the model since they are repre-
sented in the database by very few points, challenging the
training of the model in this extreme range.

Overall, in terms of model performance, daily traffic flow
has the highest relative importance over all the evaluated
features, which is a consequence of the fact that the indirect
losses represent the majority of the losses calculated and are
directly related to the daily traffic. Moreover, maximum pier

Table 4. Main parameters selected for the random forest implementation
after calibration exercise performed on the testing set.

Parameter Value

Training/Testing split 90/10
Number of estimators 40
Maximum Tree Depth 8
Maximum Features

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
features

p
Minimum Leaf Samples 1
Minimum Split Samples 5

Figure 18. Performance of the machine learning model on the database: (a) feature importance, (b) performance of the model on the training set, (c) performance
of the model in the testing set.

Table 5. Performance metrics for the machine learning model on the entire
dataset.

Parameter Value

Root-mean-squared error (RMSD) e 52,279.8
Mean absolute error (MAE) e 10,888.2
Median absolute error (MedAE) e 3,398.4
Coefficient of determination (R2) 0.542
Total AALpred / AALcalc 0.962
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height was found to be the second most relevant feature when
trying to predict AAL, which is a parameter that is not cur-
rently accounted for in the 2020 MIT Guidelines and has been
shown to have a correlation with the dynamic properties of
bridges in previous studies (Zelaschi et al., 2016). The max-
imum span length, which has a great impact in the risk classi-
fication of the 2020 MIT Guidelines, as will be shown in the
following section, has the lowest relative importance as per the
machine learning model exercise implemented.

Using the predicted values to determine the priority of
assets and comparing it to the one defined by the AAL
results actually calculated leads to encouraging results, as
shown in Figure 20. The application of the model to only
define the relative priority of assets in the portfolio produces
a median absolute error of 54 positions, which represent
roughly 10% of the total number of assets in the case study.

6. Italian guidelines for bridge portfolio assessment

The 2020 MIT Guidelines propose a multi-level and multi-
component approach that classifies bridges in risk categories

through the processing of qualitative metrics, specific to
each of the considered hazards: a) structural/foundational,
including eventual degradation; b) seismic; and c) flood/-
landslide. These guidelines have been recently analysed and
evaluated by Santarsiero, Masi, Picciano, and Digrisolo
(2021), where a thorough summary of the entire classifica-
tion methodology is presented. In such study, the simple
application of the seismic and degradation components of
the guidelines to an inventory of 48 bridges concluded that
the obtained classification leads to conservative results.

As can be seen in Figure 21, the overall framework of the
2020 MIT Guidelines is organized in six levels of evaluation
with increasing degrees of analysis required for each level.
Initially, Level 0, concerns the collection of data in terms of
location and general geometric and typological characteris-
tics of each bridge from construction documents or inspec-
tion reports. Level 1 requires an inspection to be performed
on each asset to evaluate the state of degradation of its com-
ponents in its current state. Level 2 processes the collected
information in the previous levels to determine an initial
class of attention, of which there are five classes available
(low, medium-low, medium- medium-high, high); this level
can be seen as a preliminary prioritization scheme from
which different assessment actions are required depending
on the resulting level of attention class obtained. Level 3
involves a preliminary assessment to be made to bridges
with a class of attention of ‘medium’ or ‘medium-high’,
evaluating in more detail if, based on the typology of the
bridge and the defects observed, it merits a more accurate
assessment of the individual asset. Level 4, required for
bridges with an attention class of ‘high’ or bridges for which
the preliminary assessment considers it necessary, involves a
detailed analysis on the asset to evaluate its state as per the
current construction codes. Finally, Level 5 is reserved for
bridges that are considered of vital importance to the road
network, and requires a sophisticated analysis beyond the
structural performance, which includes the interaction of
the bridge with the network and the social and economical
context in which is located.

Figure 19. Machine learning model results: (a) predicted AAL results for case study inventory, (b) histogram of calculated and predicted results.

Figure 20. Comparison of prediction prioritisation with benchmark.
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In the study presented herein, the focus will be only on
the Level 2 definition of classes of attention, and only on
the treatment of the seismic risk classification of bridges
without consideration of structural deterioration, since it is
the only component for which the benchmark AAL calcula-
tions performed in the previous sections is applicable for
comparison. For what concerns seismic risk, as with the
other considered risk types, the procedure is divided in the
three well-known main components: (a) hazard; (b) expos-
ure; and (c) vulnerability, each of which being assigned one
of five possible attention levels that range from low to high.
This is done by processing qualitative characteristics of each
bridge using a specific set of tabular values, as described in
the following paragraphs. After each risk component is
processed and a classification is made, all components are
convoluted into an overall seismic risk attention class.

In general, the classification of each of the components
of risk is determined by a preliminary class, assigned by the

qualitative evaluation of primary parameters that can be fur-
ther altered by secondary parameters. These may increase or
decrease the preliminary classification within the available
five classes. The rules for the assignment of the preliminary
classes per component are summarised in Tables 6, 7 and 8
for the hazard, exposure and vulnerability facets, respect-
ively. It is also important to note that structural degradation
determined from inspections, availability of alternate routes
and the consideration of a bridge as strategic, even though
qualitative and a little subjective, are also parameters used
to alter the classification of a bridge according to these
guidelines. For simplification and because this information
was not available, these parameters are not included in the
tables shown here nor in their application to the case study.

Once each component has been characterised, they are
combined to determine an overall seismic risk class, as per
the indications shown graphically in Figure 22. As noted by
Santarsiero et al. (2021), the overall classification is very
much affected by the vulnerability component; for example,
if this component is high, then the seismic risk class will be
assigned the highest category, almost regardless of the other
components.

The methodology foreseen by the guidelines was applied
to the case study inventory examined in Section 4, providing
the results shown in Figure 23. It can be seen that both the
hazard and vulnerability components are mostly classified in

Figure 21. Multi-level framework proposed by the 2020 MIT Guidelines (Santarsiero et al., 2021).

Table 6. 2020 MIT guidelines’ seismic risk classification – hazard.

PGA
(10% @ 50 years)

Topography Soil type

T1, T2, T3 T4 A, B C, D, E

0.05–0.10 Low Medium-Low þ0 þ1
0.10–0.15 Medium-Low Medium þ0 þ1
0.15–0.20 Medium Medium-High þ0 þ1
0.20–0.25 Medium-High High þ0 þ1
>0.25 High High þ0 þ1
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the highest possible option, leading to an overall seismic
risk class with mostly the high category. This is attributed
to the fact that the vulnerability component dominates for
simply supported bridges with spans longer than 20m that
have not been seismically designed, which correspond to the
predominant characteristics in the case study and to a large
portion of the Italian bridge stock.

The obtained seismic category class is compared with the
priority AAL rank, defined by sorting the values of AAL in
an increasing ranked fashion. The bar plot in the bottom
right corner of Figure 23 shows the seismic classification in
the vertical axis (with values 1 through 5 representing low
to high categories, respectively) while the AAL-based rank-
ing of the 531 bridges in the case study is located in the
horizontal axis. The assets with the highest total AAL results
are plotted in the first (left) positions. Consequently, if the
2020 MIT Guidelines classification were in complete agree-
ment with the AAL ranking, the bridges with higher risk
categories would all be located on the left of the plot and
the overall shape of the plot would have a descending trend.

While the classification does seem to group the high and
medium-high risk categories mostly in positions that are in
agreement with the AAL-based ranking, the fact that there
are only two resulting categories and the predominance of
the high class creates a problem for the effective implemen-
tation of these guidelines as a tool for efficient decision-
making and resource prioritisation. As per the 2020 MIT
Guidelines, 498 bridges from the 531 in the inventory that
were classified into the high category would require the
immediate development of detailed structural analysis,
implementation of periodic inspections and the installation
of monitoring systems. This would clearly require a great
number of resources to comply with and be, in some
respects, not fulfilling the need of being able to prioritise
effectively.

7. Directions for improvement of the prioritisation
scheme

Using the insights gained by the application of the seismic
risk quantification to the case study in Section 6, along with
the influential features found via machine learning techni-
ques in Section 5, a possibly improved methodology to per-
form bridge prioritisation, based on the same conceptual

framework from the 2020 MIT Guidelines and their
observed performance, is outlined and discussed here. This
proposed methodology follows the same assessment criteria
as the 2020 MIT Guidelines. It thus maintains the ease of
application but adapts the evaluation thresholds currently
employed to be more in line with the findings of the risk-
based prioritization and with the insights gained through
the machine learning process employed.

In general, the 2020 MIT Guidelines constitute a robust
and well-structured methodology for bridge management.
Addressing risk as a convolution of each its three compo-
nents, as well as the possibility to include multiple hazards,
is innovative since it allows for the disaggregation of the
risk classification to identify problematic areas and conse-
quently aid in the immediate intervention and retrofitting
decision making. The shortcomings that were observed dur-
ing its implementation are specifically related to the thresh-
olds used to characterise each of its components in a simple
and schematic manner, as well as the high relative import-
ance that the vulnerability component has on the overall
risk class.

While this conservatism in the vulnerability component
was likely a conscious decision made to prioritise bridge
safety, it has the downside of classifying a large number of
bridges, even those with low associated losses, in the catego-
ries of highest priority, which is not in agreement with the
findings from a complete quantitative exercise based solely
on economic losses, such as the one performed in Section 4.
Furthermore, the definition of only five risk classes creates
an additional limitation since it can be restrictive when a
large, thus more diverse, inventory is considered. For
example, as in the results obtained after the classification of
the adopted case study, if a large number of assets is classi-
fied into a single category, the 2020 MIT Guidelines provide
no indication on how they can be further prioritised so that
bridge management institutions can efficiently allocate their
resources in implementing the monitoring and required
explicit analysis actions.

In order to potentially improve the results obtained by
the application of the guidelines, the definition of fixed risk
classes could be, for instance, changed to an approach based
on a point system per component without establishing a
limit. The overall seismic risk score would then be com-
posed of the sum of the scores of each component with the
available number of points per component being defined as
proportional to the findings from the machine learning
model, by giving a higher importance to the exposure com-
ponent and the daily traffic flows, in order to further stress
the importance of the indirect losses. In terms of the hazard
component, the current thresholds values available in the
guidelines are low in comparison to the seismic potential in

Table 7. 2020 MIT guidelines’ seismic risk classification – exposure.

Max span length (m)

Daily traffic (vehicles) Overpass

<10000 10000–25000 >25000 Roads Rivers Depressions

<20 Low Medium-Low Medium þ1 þ0 �1
20–50 Medium-Low Medium Medium-High þ1 þ0 �1
>50 Medium Medium-High High þ1 þ0 �1

Table 8. 2020 MIT guidelines’ seismic risk classification - vulnerability for RC
bridges.

Spans

Max span length (m) Static system Seismic design

<20 m >20 m Hyperstatic Isostatic Yes No

Single Low Medium-Low þ0 þ2 þ0 þ1
Multiple Medium-Low Medium þ0 þ2 þ0 þ1
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the Italian territory according to the hazard model used
(Woessner et al., 2015). Therefore, the values could be

updated as shown in Table 9 to be more applicable to case-
study areas of high seismicity according to the hazard model
used.

Figure 23. Results for application of 2020 MIT Guidelines to case study inventory.

Table 9. Proposed modified seismic risk classification – hazard.

PGA
(10% @ 50 years)

Topography class Soil type

T1, T2, T3 T4 A, B C, D, E

< 0.10 1 2 þ0 þ1
0.10–0.20 2 3 þ0 þ1
0.20–0.30 3 4 þ0 þ1
0.30–0.40 4 5 þ0 þ1
> 0.40 5 5 þ0 þ1

Figure 22. Determination of seismic risk class based on the partial classification of hazard, exposure and vulnerability, adapted from Santarsiero et al. (2021).

Table 10. Proposed modified seismic risk classification – exposure.

Max span
length (m)

Daily traffic Overpass

<4000 4000–10000 >10000 Roads Rivers Depressions

<25 1 þ3 þ5 þ1 þ0 �1
25–40 2 þ3 þ5 þ1 þ0 �1
>40 3 þ3 þ5 þ1 þ0 �1
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Regarding the exposure component, the thresholds for span
lengths could be modified to reduce the impact of this param-
eter on the overall results. Also, traffic flows would be reduced
to increase its sensitivity, given that this parameter was
observed in Section 6 to be the most influential in the deter-
mination of annual losses. Furthermore, to provide more
importance to the overall component, the total amount of
awardable points would increase as shown in Table 10.

Regarding the vulnerability component, the threshold val-
ues for number of spans and maximum span length could
be updated as per Table 11, which were calibrated by iterat-
ing on different values and observing their effect in the clas-
sification performance with respect to the AAL ranking.
Furthermore, the maximum pier height would be included
as an additional parameter since it was recognised as a rela-
tively important feature during the machine learning experi-
ment, shown in Figure 19(a).

Adopting the described modification proposals, the pro-
posed modified methodology was applied to the same case
study, leading to the results shown in Figure 24. It can be
observed that there is a higher resolution of results for each of

the components (i.e. no saturation with the high limit), which
also translates in a wider range of risk scores for the overall
inventory. The spatial distribution of the scores is more in
agreement with the loss results and the overall prioritisation
performance appears greatly improved with respect to the out-
comes of the original guideline’s methodology.

It is important to note that, while the definition of the
case study and its properties were designed to be considered
as representative of a common typology of the bridge net-
work of Italy, the proposed methodology was made by cali-
brating values from the available database therefore its
applicability would be limited to real case databases that
would be created following the same methodology as the
one used herein, particularly in terms of road network
modelling.

8. Conclusions

In this study, a synthetic case study of 617 bridges in the
province of Salerno, Italy, was generated by sampling from
a database of 308 bridges with complete information and

Table 11. Proposed modified seismic risk classification – vulnerability.

Spans

Max span length (m) Static system Seismic design Max pier height (m)

<30 m >30 m Hyperstatic Isostatic Yes No <15 >15

<3 1 2 þ0 þ1 þ0 þ1 þ0 þ1
3–10 2 3 þ0 þ1 þ0 þ1 þ0 þ1
>10 3 4 þ0 þ1 þ0 þ1 þ0 þ1

Figure 24. Results for the proposed modified seismic risk classification’s prioritization.
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was used to perform seismic risk assessment considering
direct and indirect loss economic losses. The resulting data-
base of collapse-based average annual losses (AAL) was
explored using data science techniques to determine the
influence of simple bridge parameters on the calculated
losses and associated priorities, to ultimately use these
insights to evaluate and propose improvements to the recent
guidelines on risk classification and management, safety
assessment and the monitoring of existing bridges
(Consiglio Superiore dei Lavori Publici, 2020) � 2020 MIT
Guidelines.

The application of the described methodology led to the
following conclusions, regarding the prioritisation of bridge
assets within a regional portfolio, even with limited informa-
tion available:

� When data and analysis resources are available to con-
sider both direct and indirect components of loss, AAL
can be considered an alternative or complementary met-
ric by which assets within a bridge portfolio can be pri-
oritised in terms of resource allocation, inspection and
retrofitting; it was seen here that this metric combines
the vulnerability of each bridge, as well as the import-
ance that each element has within the entire road net-
work system in a single decision variable.

� Overall, it is concluded that indirect losses have a higher
economic impact on the system when compared to direct
losses. Given the complexity in their nature, the order of
magnitude of this difference depends heavily on the
assumptions made during the assessment process, such
as using a single transportation mode, median repair
times and excluding the residential road system; how-
ever, the large difference observed herein is expected to
increase when considering all transportation modes.

� When evaluating the influence of commonly available
variables in the results of total AAL, it was seen that
daily traffic flow, which is related to the exposure com-
ponent, seems to have the higher relative importance, in
comparison to other bridge structure-specific metrics.
This result appears reasonable, given the high contribu-
tion of the indirect component of loss to the overall
results.

� When evaluating the 2020 MIT Guidelines that have
recently been published in Italy, it was observed that the
application of the methodology leads to large portions of
the inventory classified to the highest-risk available cat-
egory, creating a challenge in terms of its usefulness as
an efficient way to classify bridge priorities and resource
allocation. Different reasons can be cited for this effect,
such as the limited availability of possible categories and
the high importance placed on the vulnerability compo-
nent that uses somewhat conservative thresholds for its
classification, such as the restrictive 20m maximum span
length limit.

� Using the insights gained by the analyses made, possible
directions for an improved prioritisation methodology
were drawn and discussed based on modifications made
to the current 2020 MIT Guidelines. While further

scrutiny and additional case studies are needed, such a
modified prioritisation scheme performed better, when
compared to a benchmark classification analytically
based on AAL.
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