

Artificial neural network-based ground motion model for nextgeneration seismic intensity measures

Gerard J. O'Reilly', Savvinos Aristeidou², **Davit Shahnazaryan**³

1 – Associate Professor, IUSS Pavia, Italy

2 - PhD candidate, IUSS Pavia, Italy

3 – Postdoctoral Researcher, IUSS Pavia, Italy

Introduction - Background

- Ground motion models (GMMs) are used to estimate different intensity measures (IMs), given a set of rupture parameters
- For each predictive model the following may vary
 - IM type
 - Ground motion database
 - Regression model
- When different IMs are considered, it can possibly introduce some heterogeneity, which is then propagated into the seismic analysis and risk assessment results
- This heterogeneity can be mitigated with a **generalised ground motion model (GGMM)**
- With a GGMM all the IMs of interest can be included in the same model
 - Interdependencies among multiple IMs can be captured
 - Simultaneous regression of all IMs using a mixed-effects regression
 - Ease of use

Introduction – What is developed in this study

- Artificial neural network (ANN) regression method gives us the flexibility to materialise such model
- Incorporating several traditional and next-generation
 IMs
- Three different horizontal component definitions were included
- Performance of the GGMM was evaluated using several metrics and compared to various existing GMMs developed with either the classical approach or machine learning methods

Strong motion dataset and filtering criteria

Starting from the whole <u>NGA-West2 database</u> (Ancheta et al., 2013), we <u>discarded records</u> with:

- $M_{\rm w} < 4.5$
- $R_{\text{rup}} > 300 \text{ km}$
- Recordings from instruments not on the free field conditions
- $D_{hvp} > 20 \text{ km}$
- $V_{\rm s.30} > 1300 \,\rm m/s$
- Minimum usable frequency > 0.25 Hz
- Mw < 5.5 and fewer than five recordings. $5.5 \le M_{\rm w} < 6.5$ and fewer than three recordings
- Aftershocks, defined as a 'Class 2' event with centroid Joyner-Boore distance, $\it CR_{\rm IB} < 10~{\rm km}$

4,135 records from 102 earthquakes

Predictor and response features

Predictor features			_		
Description	Min value	Max value		Dogwanga faatuung	Horizontal
Moment magnitude, $M_{\rm w}$	4.5	7.9	<u></u>	Response features	component definition
Rupture distance, R_{rup} [km]	0.07	299.59	<u></u>	PGA	RotD50
Hypocentral depth, D_{hyp} [km]	2.3	18.65		PGV	RotD50
Time-averaged shear-wave velocity to	106.83	1269.78		PGD	RotD50
30m depth, $V_{s,30}$ [m/s]			_Significant	Ds595	Geometric mean
Style of faulting, <i>SOF</i> *	0	4	_duration	Ds ₅₇₅	Geometric mean
Depth to the 2.5 km/s shear-wave	0	7780		$\mathbf{C}_{\sigma}(T)$	RotD50, RotD100,
velocity horizon (a.k.a., basin or			Filtered —	Sa(T)	Geometric mean
sediment depth), $Z_{2.5}$ [m]				FIV3(T)	Geometric mean
Depth to top of fault rupture, Z_{tor} [km]	0	16.23	Incremental	$\mathbf{C} = (\mathbf{T})$	RotD50, RotD100,
Joyner-Boore distance, R_{jb} [km]	0	299.44	velocity	$Sa_{avg2}(T)$	Geometric mean
Distance measured perpendicular to	-297.13	292.39		$\mathbf{C} = (T)$	RotD50, RotD100,
the fault strike from the surface				$Sa_{avg3}(T)$	Geometric mean
projection of the up-dip edge of the			From 0.2T to 2.0T		
fault plane, R_x [km]					
			From 0.2 to 3.0T		

Model architecture

$$log_{10}(IM_r) = f_{linear} \left[b_r + \sum_{h=1}^{150} W_{h,r} \cdot f_{tanh} \left(b_h + \sum_{p=1}^{9} W_{p,h} X_p \right) \right]$$

$$\log_{10} IM_i = f_i(X, \theta) + \delta b_i \tau_i + \delta w_i \varphi_i$$
$$\sigma = \sqrt{\tau^2 + \varphi^2}$$

- *MinMax* normalisation
- log_{10} transformation in the vector of IMs
- Activation functions: softmax, tanh, and linear in the input, hidden and output layers, respectively
- Loss function: MSE
- Training and test set split: 80:20 ratio

Model performance – Performance metrics

- After mixed effects
- Optimal model selected

Model performance – Attenuation plots and comparison with other GMMs

Machine learning models

GMM	Abbreviation	IMs
Campbell and Bozorgnia (2014)	CB14	PGA, PGV, Sa, Sa _{avg}
Dhanya and Raghukanth (2018)	DR18	Sa
Fayaz et al. (2021)	FXZ21	Sa, Ds ₅₉₅
Campbell and Bozorgnia (2014)	CB08	PGD
Afshari and Stewart (2016)	AS16	<i>Ds</i> ₅₇₅ , <i>Ds</i> ₅₉₅
Dávalos et al. (2020)	DHM20	FIV3
Dávalos and Miranda (2021)	DM21	Sa _{avg3}

Based on NGA-West2 Database

Model performance – Attenuation plots and comparison with other **GMMs**

Significant duration, *Ds*

Filtered incremental velocity, FIV3

Average spectral acceleration

vs Rupture distance

Model performance – Residuals

Inter-event

Intra-event

Total

$$\sigma = \sqrt{\tau^2 + \varphi^2}$$

- No strong dependency on rupture parameters
- No bias
- Homoscedasticity assumption seems reasonable

Model performance – Dispersion

Total standard deviation lowest for most IMs when using the GGMM

Correlation models (sneak peek)

Summary and conclusions

- This study proposed a generalised ground motion model (GGMM) for active shallow crustal earthquakes
- Stringently filtered subset of NGA-West2 database
- Miscellaneous amplitude and cumulative-based intensity measures (IMs)
- More IMs can be seamlessly added to the model's outputs with only minor modifications
- Different horizontal component definitions included
- The proposed GMM was validated through performance metrics and comparisons with other GMMs
- Dispersion of residuals (aleatory uncertainty) is low and performance metrics (i.e., R^2 and MSE) are good

Why is there a need for yet another model?

- Explored the potential of ANN to include various IMs and horizontal component definitions in a single model
 - User can use a single model to output several IMs → Which accommodates ease of use
 - Effectively captured the complex relationships and interactions between different IMs
 - Consistent and unified treatment of IM correlations since they come from the <u>same database</u> and GMM
- Recent research highlighted the potential of those next-generation intensity measures for a better characterisation of structural response (i.e., sufficiency, efficiency etc.)
- This model adds to the very limited pool of GMMs that estimate filtered incremental velocity, or average spectral acceleration
- More refined predictions of next-generation IMs using the ANN

Aristeidou, S., Shahnazaryan, D. and O'Reilly, G.J. (2024) 'Artificial neural network-based ground motion model for next-generation seismic intensity measures', Under Review

Model is available to use at:

https://github.com/Savvinos-Aristeidou/ANN-GGMM.git

Soon to be implemented in OpenQuake

Thank you!

Questions?

CENTRE FOR TRAINING AND RESEARCH ON REDUCTION OF SEISMIC RISK