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Abstract: This paper presents the application of neural networks to ground motion intensity modelling. We 
focus on the development of a generalised ground motion model (GGMM) incorporating several seismic 
intensity measures (IMs) and quantifying the correlations between them. These range from classical IMs such 
as spectral acceleration to more novel and advanced IMs recently shown to be much better descriptors of 
structural performance and seismic risk. A mixed-effects regression approach is adopted to capture the inter- 
and intra- event variability of the GGMM prediction. Artificial neural network (ANN) is used to perform the 
regression, which differs from the approach used in many past works and present in many existing ground 
motion models (GMMs). The correlations between the IMs were also quantified, which allows for a more refined 
prediction of seismic shaking and a unified treatment of prediction and correlation. This will allow more 
advanced record selection for non-linear dynamic analyses to be performed and considers several facets of 
ground shaking currently overlooked in many works. We evaluate the performance of the developed GGMM 
using several metrics and comparing it to various GMMs currently used and developed with either the classical 
method or with machine learning methods. The results show that the proposed GGMM exhibits improved 
performance, while allowing a more consistent cross-correlation between the different IMs. This paper outlines 
the general methodology, a general overview and discusses possible implications. 

1. Introduction 
Ground motion models (GMMs) are an essential part of a seismic hazard analysis, regional seismic analysis, 
structural loss estimation, shake maps, and more, which are included in both the fields of earthquake 
engineering and seismology. GMMs estimate the mean ground motion intensity and dispersion, given a set of 
causal rupture parameters (e.g., magnitude, source-to-site distance, etc.). Many different intensity measures 
(IMs) can be used to characterise the ground motion shaking intensity at the site of interest. There is a growing 
interest in using cumulative intensity-based IMs (i.e., Ds595) together with peak response amplitude-based IMs 
(i.e., Sa, FIV3), which sparked the development of a plethora of GMMs to estimate each type of IM. However, 
these GMMs (e.g., Bradley, 2011; Afshari and Stewart, 2016; Campbell and Bozorgnia, 2019) predict the IMs 
independently, with each available GMM being based on a different ground motion database (or at least 
applying different filtering criteria) and different regression models for the fit. This leads to some degree of 
heterogeneity, which can be mitigated by developing a generalised ground motion model (GGMM) to estimate 
all of the different type of IMs collectively (Fayaz et al., 2020). Using independent GMMs to estimate assorted 
ground motion IMs, like Sa, Saavg, FIV3, Ds595, etc., for the same earthquake scenario can introduce unwanted 
bias and increased variability, which is then propagated into the results of the seismic analysis and risk 
assessment.  

Traditionally, GMMs are developed using parametric functional forms and fitting a set of coefficients based on 
empirical data. In recent years, researchers have been exploring the potential of data-driven non-parametric 
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regression techniques for developing GMMs, as for example the work Dhanya and Raghukanth (2018), which 
has the advantage of not requiring to set up mathematical formulations (i.e., functional forms) that describe 
best the physical phenomenon. It is acknowledged, however, that relying purely on data-driven approaches is 
not a perfect solution as these models work well where data is available. In ground motion modelling, we are 
typically interested in strong shaking which requires data from large magnitude earthquakes, which are less 
frequent. Hence, there is a danger that utilising these data-driven GMMs to predict intensities that are not well 
recorded and fitted to, or even beyond the fitting range, that inaccuracies may arise. It is here that robust 
verification is needed and, in some cases, the physical meaning of the parametric functional forms may be 
advantageous.  

Therefore, in this study the GGMM was developed using an artificial neural network (ANN) framework that can 
be used to estimate a set of intensity measures (IMs) utilising seismic source, distance, and site parameters 
as input, which are listed in Section 3. The results and predictions of the proposed GGMM were then presented 
and compared against the aforementioned recent and well-established GMMs. The following GMMs from the 
literature were used for the comparisons: Campbell and Bozorgnia (2008) for peak ground displacement 
(PGD), denoted as CB08; Campbell and Bozorgnia (2014) for peak ground acceleration (PGA), peak ground 
velocity (PGV), and spectral acceleration, Sa, denoted as CB14; Dávalos et al. (2020) for filtered incremental 
velocity, FIV3, denoted as DHM20; Dávalos and Miranda (2018) for Saavg, denoted as DM18; Afshari and 
Stewart (2016) for Ds595, denoted as AS16. The following section describe the ground motion database utilised, 
the predictor and response features used in the ANN model followed by an evaluation of the model’s 
performance. 

2. Strong motion database and filtering 
To utilise ANN to fit a GGMM, a dataset of ground motion recordings was first required. The PEER NGA-West2 
(Ancheta et al., 2013) database containing bi-directional ground motion acceleration records including site 
details, source information, and ground motion IMs was adopted. The database was filtered to eliminate some 
of the records that may be deemed unsuitable for general use based on the criteria given below: 

• Only ground motion records from earthquakes with moment magnitude, Mw, ≥ 4.5 were utilised. 
Earthquakes of lower magnitude were omitted due to insufficient intensity to induce significant non-linear 
deformations or structural collapse in engineered buildings without appropriate scaling. 

• Recordings from instruments located on free field or below surface or in the first storey of low-rise 
structures (less than four storeys) were utilised. This was based on the Geomatrix 1st letter code of the 
NGA-West2 flat-file.  

• Events with hypocentral depth greater than 20 km were discarded. 
• Events recorded on bedrock were discarded based on the upper threshold of 1200 m/s of mean shear 

wave velocities in the upper 30 meters, Vs,30. 
• Recordings with a rupture distance, Rrup, greater than 300 km were discarded. 
• Only recordings from strike-slip, reverse, and reverse-oblique events from active shallow crustal tectonic 

environments were included. 
• Only records whose minimum usable frequency of both components was smaller than 0.25 Hz were 

considered. 
• Earthquakes with fewer than 3 recordings were discarded, as they could be considered poorly recorded, 

and therefore adversely impact the intra-event variability of the model. 
• Recordings were considered only if both horizontal components were available. 
• Recordings from aftershocks were excluded since most seismic hazard analyses use GMMs based on 

mainshocks. In this study, a recording is classified as a aftershock if it is defined as ‘Class 2’ event with 
CRJB < 10 km according to the criteria given in Wooddell and Abrahamson (2014). 

Based on the filtering criteria outlined above, the final ground motion database included 4134 recordings with 
96 earthquakes. The earthquakes were classified into five styles of faulting (SOF) including strike-slip (53 
earthquakes and 1815 recordings), normal (10 earthquakes and 75 recordings), normal oblique (4 earthquakes 
and 249 recordings), reverse (20 earthquakes and 1075 recordings) and reverse oblique (9 earthquakes and 
917 recordings). Figure 1 displays the Mw, Rrup and Vs,30 distributions of the filtered database. Additionally, the 
depth to shear velocity of 2.5 km/s, Z2.5, when missing for some ground motion recordings, was estimated 
following the prediction equations of Kaklamanos et al. (2011). 
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Figure 1. Mw, Rjb and Vs,30 distribution of the filtered database 

3. Predictor and response features 
Prior to the development and training of Artificial Neural Network (ANN) models, it is essential to identify the 
predictor and response features. The informed selection of predictor features is essential to the robustness 
and accuracy of subsequent modelling process. Within the scope of GMMs, past research (e.g., Fayaz et al., 
2020) has highlighted the substantial predictive power of moment magnitude, Mw, and rupture distance, Rrup. 
In addition, several other source parameters were included for the training of the ANN models. The full list of 
predictor and response features within this study are given in Table 1. Users are required to provide a value 
for each of the predictor features shown in the first column and can obtain predictions for any of the response 
features listed in the second column, essentially making it a generalised GMM for the variety of IMs that can 
be predicted. 

Table 1. List of eventual predictor and response features, along with their horizontal component definition. 
 
Predictor features Response features 

Moment magnitude, Mw PGA 

Rupture distance, Rrup [km] PGV 

Hypocentral distance, Rhyp [km] PGD 

Time-averaged shear-wave velocity to 30m depth, 
Vs,30 [m/s] 

D5-95 

Style of faulting, SOF Sa(T) 

Depth to the 2.5 km/s shear-wave velocity horizon 
(a.k.a., basin or sediment depth), Z2.5 [m] 

FIV3(T) 

Depth to top of fault rupture, Ztor [m] Saavg(T) 

Joyner-Boore distance, Rjb [km]  

Distance measured perpendicular to the fault strike 
from the surface projection of the up-dip edge of the 
fault plane, Rx [km] 

 

 
Response features, or IMs essentially, included the PGA, PGV, PGD, Ds5-95, 22 definitions of Sa at periods 
ranging from 0.01s to 5.0s, 14 definitions of average spectral acceleration, Saavg, at periods ranging from 0.1s 
to 4.0s given by Equation (1) (Eads et al., 2015), 14 definitions of filtered incremental velocity, FIV3, at periods 
ranging from 0.1s to 4.0s given by Equation (1) (Dávalos and Miranda, 2019). 
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where Sa corresponds to the 5%-damped pseudo-acceleration spectral value, ci is factor ranging uniformly 
from 0.2 to 2.0 N=10 times. Previous research has shown that this spacing scheme is more efficient than a 
logarithmic one and that the difference between using 10 or 100 periods is negligible, on average (Eads and 
Miranda, 2013). 

 𝐹𝐼𝑉3 = 𝑚𝑎𝑥3𝑉),+!,$ + 𝑉),+!,% + 𝑉),+!,-, 5𝑉),+&.$ + 𝑉),+&.% + 𝑉),+&.-56 (2) 
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where Vs(t) is a series of incremental velocities (IVs) estimated using time segments of α·T, Vs,max1, Vs,max2, 
Vs,max3 are the first, second, and third local largest IVs in Vs(t), respectively, and Vs,min1, Vs,min2, Vs,min3 are the 
first, second, and third local minimum IVs in Vs(t), respectively, T is the period of interest, tend is the last instant 
of time of acceleration time series, and ügf is the filtered acceleration time series using a second-order 
Butterworth low-pass filter with a cut-off frequency, fc, equal to β·f, where β is a scalar controlling the fc/f ratio 
and f is 1/T. The parameters α of 0.7 and β equal to T are based on the findings of Dávalos et al. (2020). 

Ground motions are usually recorded in three orthogonal directions in space, so there is a need to combine 
these recorded directions into an IM with a specified horizontal component definition. Several horizontal 
component definitions have been used in the literature to quantify the intensity of a ground motion on single-
degree-of-freedom systems based on the two orthogonal horizontal components, such as maximum of the 
two, average, square-root-of-sum-of squares, geometric mean, GMRotI50, RotD50. Most modern GMMs use 
the RotD50 definition (Boore, 2010), as it is commonly accepted to be the state-of-the-art horizontal component 
definition for spectral IMs. The RotD50 definition was adopted here for Sa, whereas for more advanced IMs 
(i.e., FIV3 and Saavg) and for other IMs (i.e., PGA, PGV, PGD and Ds595) the geometric mean definition was 
adopted. 

4. Model architecture 
4.1. Fixed-effects with artificial neural network 
A “feed-forward” ANN was employed here for prediction of the IMs outlined in Section 3. ANN is a subset of 
deep learning and is composed of artificial neurons interconnecting an input layer, one or more hidden layers, 
and an output layer (McCulloch and Pitts, 1943). Each neuron in an ANN performs a simple computation, 
where it receives a signal, applies an activation function, and passes the result through the hidden layers to 
the output layer, hence the term “feed-forward”. While the neurons in the hidden layers process the information, 
the neurons in the input layer simply transmit the input data, and the neurons in the output layer provide the 
final outputs, or within the scope of this study, the predictions of IMs of interest. Each connection has an 
associated synaptic weight representing the strength of the connection. Similarly, neurons of the network are 
associated with a bias term, which determines the threshold at which a neuron is activated. The synaptic 
weights of the connections along with biases of the neurons represent the parameters of the neural network 
which are adjusted during the training process to optimise the performance of the network. The synaptic 
weights are used as the multipliers of the outputs of the previous layer and the bias is a constant added to the 
outputs before passing through the activation function. The training is typically done through a technique called 
backpropagation, which uses a gradient descent optimisation (Kiefer and Wolfowitz, 1952), where the network 
tries to minimise the difference between its predictions and the actual target values in the training dataset. For 
detailed description of neural networks, readers are referred to Haykin (2009). The schematics of the chosen 
ANN architecture is shown in Figure 2, and the general expression to predict each IM is as per Equation (4). 
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where Xp is the predictor feature p (Table 1), Wp,h is the weight of the connection between predictor neuron p 
and hidden neuron h for the predictor Xp, bh is the bias of the hidden neuron h, Wh,r is the weight of the 
connection between hidden neuron h and response neuron r, br is the bias of the response neuron r (from 1 
to 54), fsoftmax and flinear are the activation functions of the hidden and response layers, respectively.  
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Figure 2. Architecture of the ANN ground motion model 

The ANN training was performed within a Python environment, using the open-source TensorFlow library 
(Abadi et al., 2015). The step-by-step implementation, including dataset processing, training of ANNs and 
generation of predictions, are outlined herein. Dataset feature processing and selection of ANN parameters 
and functions is described as follows: 

• Predictor feature engineering: MinMax normalisation is adopted to ensure that predictor features are on 
a similar scale, hence have a comparable influence on the model’s learning process (e.g., magnitude 
tends to range between Mw = 4.5 - 8, but soil properties can vary between Vs,30 = 200 - 1200 m/s). This 
can improve the convergence of the training process and make it less sensitive to the scale of predictor 
features. Additionally, the initialisation of weights can be more effective, which will facilitate faster 
convergence and prevent gradients vanishing or exploding issues. The scaling was done using a range 
of 0.1 to 0.9 instead of 0 and 1 to maintain a small buffer at both ends of the range, where the data may 
contain values close to the minimum and the maximum but is not viewed as an outlier. For what regards 
SOF, one-hot encoding was applied. 

• Response (IMs) feature engineering: Similar to predictor features, the response features are scaled to 
span similar ranges. Typically, a log10 transformation is applied to the vector of IMs. The log10 
transformation limits the response parameter range more than a natural logarithm transformation, and 
therefore a more robust fit could be achieved (i.e., better performance metrics). 

• Number of hidden layers and neurons: A single hidden layer was employed following a trial-and-error 
approach, which demonstrated that using just one hidden layer was adequate for making predictions. 
The input layer consisted of 9 neurons, matching the number of predictor features, while the output layer 
consisted of 54 neurons, corresponding to the number of considered IMs. Concerning the number of 
neurons in the hidden layer, 40 neurons were chosen, as it produced the model’s optimal predictive 
performance (considering the chosen performance metrics and eventual model dispersion); using fewer 
or more neurons led to either underfitting or overfitting, respectively. 

• Activation functions: Calculates the output of a neuron. Given the nature of regression problems, 
normalised exponential (also known as softmax) and linear activation functions were considered in the 
hidden and output layer, respectively, based on hyperparameter tuning described later. Softmax proved 
to work better with the range of predictor features, given the MinMax normalisation. Furthermore, 
softmax in the hidden layer, introduces non-linearity, which enables the network to learn complex 
patterns from the data. 

• Optimisation algorithm and loss function: The loss function employed for optimisation was the mean 
squared error (MSE) given by Equation (5), and its minimisation was accomplished through the use of 
the adaptive moment (ADAM) estimation algorithm (Kingma and Ba, 2014), a selection made following 
hyperparameter tuning. Additionally, the coefficient of determination, R2, given by Equation (6), is used 
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to determine how well the variation of response features is explained by predictor features in a 
regression model. 

• Training and testing sets: Prior to model training, the filtered dataset from Section 2 was randomly split 
into training and testing sets using an 80-20 ratio. 
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where yi is the ith observed value, 𝑦R i is the ith predicted value, and 𝑦U is the mean value of n data points. 

The next step of the implementation involves training the ANN. To assess the model’s performance, a fivefold 
cross validation (Picard and Cook, 1984) was employed. The training set was randomly partitioned into five 
equal-sized sets. Five separate ANNs were trained, each using four of the subsets for training and the 
remaining fifth subset for model prediction validation. The procedure ensures, that each subset takes on the 
role of the validation set for its respective training. The fixed-effect regression metrics for cross-validation were 
computed as the average of the results from five ANNs. Furthermore, Bayesian optimisation (Močkus, 1975) 
was employed to determine the optimal hyperparameters for the ANN regression model. The objective within 
the context of this study was to minimise the MSE of the fixed-effects regression by exploring a range of 
hyperparameters. A summary of the hyperparameters considered are provided below: 

• Batch size from 8 to 128: helps balance computational efficiency and model performance. With smaller 
batch sizes better model generalisation can be achieved, however it can be computationally insufficient, 
as more updates are needed to process the entire dataset. In contrast, larger batch sizes aid in 
accelerating the training, but can hinder model generalisation, hence, the model is more prone to 
overfitting. 

• Training epochs from 50 to 200: during each epoch, the model passes through all training samples and 
updates its parameters (weights and biases) based on the loss incurred when making predictions. The 
updates try to minimise the error and improve the model’s performance. While the optimal number of 
training epochs can improve the model’s ability to generalise, with increasing number of epochs, 
overfitting may incur. Therefore, early stopping was implemented as a preventive measure against 
overfitting, which automatically halts training if the model stops improving over a span of 20 consecutive 
epochs.  

• Optimisation algorithm: The following optimisation algorithms were considered: ADAM; root mean 
square propagation (RMSprop); stochastic gradient descent (SGD); adaptive gradient descent 
(Adagrad); adaptive learning rate (Adadelta); a variation of ADAM (Adamax); combination of Nesterov 
accelerated gradient and Adam (Nadam); follow the regularised leader (Ftrl). 

• Learning rate of the optimisation algorithm from 0.5x10-3 to 0.05: controls the step size during weight 
updates and influences the convergence speed and stability of the model. 

• Activation function of hidden layer: The following activation functions were considered: linear; rectified 
linear unit (ReLU); leaky ReLU; exponential linear unit (ELU); scaled ELU; softmax; hyperbolic tangent 
(tanh). 

The approach was utilised to provide a comprehensive evaluation of the model’s performance while mitigating 
the potential risks associated with overfitting (high variance) and underfitting (high bias). The hyperparameters 
that yielded the best model performance are as follows: softmax and linear activation functions for the hidden 
and response layers, respectively; learning rate of 0.98x10-3; a batch size of 32; and 100 training epochs. 

4.2. Mixed-effects regression 
The general form of the generalised ground motion model is given as: 

 log$6 𝐼𝑀& = 𝑓&(𝑿, 𝜽) + 𝛿𝑏&𝜏& + 𝛿𝑤&𝜑& (7) 

where log10(IMi) is logarithm with base 10 of the ith IM; 𝑓&(𝑿, 𝜽) = 𝜇>?@!" AB#|𝑿,E is the predicted mean output from 
the ANN model, taking as input a set of GM causal features (e.g., Mw, Rrup, etc.), denoted as X; θ are the 
‘calibrated coefficients’ of the ANN model (i.e., synaptic weights and biases); δbi and δwi are the normalised 
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inter- and intra-event residuals of IMi, respectively; τi and φi are the inter- and intra-event logarithmic standard 
deviations. The main metric to evaluate the performance of the model is the total standard deviation, σ. In the 
dispersion model of this GMM, σ was kept magnitude-independent since recent GMMs noticed only minor 
dependencies on Mw and only for Mw < 5.5 (Boore et al., 2014; Campbell and Bozorgnia, 2014). To calculate 
σ, must first segregate the total residuals between inter- and intra-event residuals, which can be treated as 
normal variables that ideally should follow a normal distribution with zero mean and standard deviations τ and 
φ, respectively (Atik et al., 2010). If the inter- and intra-event residual are assumed to be mutually independent, 
then the total standard deviation can be calculated as the sum of their variances, given in Equation (8). 

 𝜎 = a𝜏% + 𝜑% (8) 

Taking advantage of this assumption and the better understanding of these two different sources of 
uncertainty, Abrahamson and Youngs (1992) proposed an one-step mixed-effect regression algorithm, using 
the maximum likelihood approach, to compute the variances τ2 and φ2. This algorithm is an iterative procedure 
in which mixed-effects, variances, and model parameters are computed successively. This procedure is now 
widely applied for the development of a GMM, and so herein it is adapted to the ANN model. The adapted 
algorithm is based on the procedure proposed in Abrahamson and Youngs (1992) and similar to the one used 
in Derras et al. (2014) and can be summarised as follows: 

1. Estimate the initial set of ANN model parameters (i.e., [W1, 2,…i] and {b1, 2,…i}) using fixed-effect training 
procedure. 

2. Estimate τ2 and φ2 from [W1, 2,…i] and {b1, 2,…i}, by maximising the log-likelihood function given in equation 
(7) of Abrahamson and Youngs (1992). 

3. Given [W1, 2,…i], {b1, 2,…i}, τ2 and φ2, estimate the random inter-event term ηi given in equation (10) of 
Abrahamson and Youngs (1992). 

4. Estimate the new [W1, 2,…i] and {b1, 2,…i}, using fixed-effects training procedure for (log10(Y)- ηi). 
5. Repeat steps 2, 3, and 4 until the until the termination criterion is satisfied. The adopted termination 

criterion is 0.1% in terms of the difference between two successive likelihood values. 

5. Model performance  
5.1. Performance metrics and comparison with other GMMs 
The performance of the ANN model can be evaluated by comparing the empirical (i.e., recorded) values of 
IMs with their corresponding median predictions of the model using a variety of metrics, which in this case 
were the MSE and R2. The resulting average MSE for the model, determined through a fivefold cross-validation 
with the optimal parameters, obtained as described in Section 4.1, were found to be 0.093 for the training set 
and 0.095 for the validation set. Finally, the model corresponding to the optimal parameters, after passing 
through the mixed-effects regression, was evaluated using the 20% unseen testing set and the regression 
metrics: MSE and R2, associated with each IM are reported in Figure 3. The eventual average MSE of all IMs 
were 0.093 for the training set and 0.095 for the test set. It is noteworthy that the average training and validation 
set MSE after cross-validation with the optimal parameters gives the same average training and validation set 
MSE, respectively, further validating the model’s accuracy. From Figure 3, it can be seen that the R2 of the 
testing set is, in general, only slightly lower than that of the training set. At the same time, both values are high, 
indicating that the model has high predictive power and avoids overfitting. The same applies to the MSE metric, 
which is inversely proportional to the model’s predictability. 

To evaluate the GGMM’s performance visually with respect to the available data and also some comparable 
GMMs available in the literature, some visual comparisons were plotted. Figure 4 shows the magnitude 
amplification of Sa(2.0s) for two different rupture distance bins compared with the GMM of Campbell and 
Bozorgnia (2014) labelled as CB14. It can be seen that the predicted values are generally close to the cloud 
mean, with a minor deviation in medium-range distances (i.e., 50 km ≤ Rrup ≤ 100 km) in high magnitudes, and 
the CB14 values also illustrate this deviation trend but are generally close to the values predicted from the 
proposed model, giving confidence to the proposed GGMM. Likewise, Figure 5 presents the distance 
attenuation of FIV3(1.0s) for two different magnitude bins and it is compared with the model of Dávalos et al. 
(2020), which to date is the only other GMM available for this IM. It can be seen that the proposed model does 
well in capturing the trends of the cloud median, while the DHM20 model generally predicts higher values, 
especially in lower magnitudes. The same results are illustrated in Figure 6, but for Ds595 and compared with 
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Afshari and Stewart (2016). While the trends between the two models are the same, the AS16 model predicts 
somewhat lower values of significant duration than the proposed model. This difference is speculated to be 
because of the different database filtering criteria to exclude recordings with unreasonably large durations 
polluted by high-frequency noise, even though the same database was used (i.e., NGA-West2). 

 
Figure 3. Training and testing MSE and R2 values of the ANN model post fixed-effects 

 
Figure 4. Magnitude amplification plots of Sa(2.0s) for two different distance bins 

 
Figure 5. Distance attenuation plots of FIV3(1.0s) for two different magnitude bins 



WCEE2024  O’Reilly et al. 

 
 

9 

 
Figure 6. Distance attenuation plots of Ds595 for two different magnitude bins 

 

 

 
Figure 7. Inter-, intra-event, and total residuals versus Mw, Rrup, and Vs,30, respectively, for three different IMs. 

Black dots and error bars represent the binned mean and ± one standard deviation, respectively 
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To check for potential bias included in the model, the inter-, intra-event, and total residuals against three ground 
motion causal parameters (i.e., Mw, Rrup and Vs,30) for three IMs (i.e., Sa(1.0s), FIV3(1.0s), Ds595) are plotted 
in Figure 7. It can be observed that there is no notable bias in the binned mean of residuals. Also, there is no 
significant change in standard deviations versus the GM causal parameters, which further corroborates the 
homoscedasticity assumption for the dispersion model of the proposed GGMM. 

5.2. Standard deviations 
The residuals between the values estimated from the model and those observed from the recorded ground 
motions were used to calculate the inter- and intra-event logarithmic standard deviations. The final standard 
deviations of all the IMs included in this study are presented in Figure 8, along with their counterparts given in 
GMMs from the literature for relative comparison. All standard deviations were transformed into natural 
logarithm (i.e., ln) units to have an equal basis for comparison since the fitted GGMM was in terms of log base 
10. It can be seen that the total standard deviation of the GGMM is the lowest for most IMs compared to that 
obtained from other GMMs available in the literature. This is the case especially for long period IMs. 
Additionally, the proposed model maintains a low inter-event standard deviation and about constant throughout 
all IMs. The high difference between intra- and inter-event standard deviations in this model, is because of the 
better characterisation of source effects, in comparison to path and site effects. 

 
Figure 8. Inter-, intra-event and total standard deviations of the proposed model for all IMs, compared with 

models from the literature. 

6. Correlation modelling 
As previously stated, this GGMM which includes several IMs finds good utility in creating consistent (i.e., from 
same database and GMM) correlation models. Correlation models between Sa, FIV3 and Ds595 were 
developed using this GGMM and presented in Aristeidou et al. (2024). As an example, the correlation 
coefficients between Sa and FIV3 are illustrated in Figure 9. 

 
Figure 9. Empirical and corresponding predicted correlation coefficients between Sa and FIV3 
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7. Summary and conclusions 
This study proposed a non-parametric GGMM to estimate different types of amplitude and cumulative-based 
IMs (i.e., PGA, PGV, PGD, Ds595, Sa(T), FIV3(T), Saavg(T)). To demonstrate the potential of this ground motion 
modelling methodology, a total of 54 IMs were presented here. Nine ground motion causal parameters were 
used as an input to the non-parametric model, which describe the physics of source, path, and site 
characteristics sufficiently. This model was developed using artificial neural networks and was trained and 
tested using a stringently filtered subset of records from the NGA-West2 strong motion database. The 
variability was characterised by a homoscedastic standard deviation model. Thorough validation exercises 
and comparisons with other GMMs were carried out to demonstrate the suitability of the GGMM. It shows how 
this framework can effectively capture the complex relationships and interactions between different intensity 
measures and is one of the advantages of this GGMM, as it estimates various IMs in a single model. This 
helps develop more consistent correlation models between the estimated IMs since they come from the same 
database and GMM. Another advantage is that it minimises the dispersion of residuals (epistemic uncertainty), 
while keeping the two fitting performance metrics (i.e., R2 and MSE) at an optimal level. The logarithmic total 
standard deviations were low, especially in long-period IMs. All in all, the results and comparisons suggest 
that the model presents excellent performance in estimating a variety of IMs.  
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