

Analytical and empirical fragility functions for regionally assessing non-ductile infilled frames

Gerard J. O'Reilly¹, Al Mouayed Bellah Nafeh²

1 – Associate Professor, IUSS Pavia, Italy 2 – Seismic Risk Modeller, GEM Foundation, Pavia, Italy

Motivation

- Common practice to develop fragility functions analytically
- Use state of the art tools in hazard analysis, ground motion selection and damage characterisation
- Much data has been collected following several earthquake events around the world
- This can be elaborated into **empirical** fragility functions
- How well are we doing when:
 - We compare empirical vs. fragility
 - Integrate recent research developments in fragility analysis

Gerard J. O'Reilly, Al Mouayed Bellah Nafeh

Definition of Building Classes

- The definition of a building class is a key step towards assessing seismic risk.
- Building classes must be defined using building attributes relevant to seismic vulnerability

Definition of DSs Thresholds

- A hybrid definition of the damage state thresholds was considered
 - Serviceability Limit States (SLO and SLD): Kurukulasuriya et al. (2022)
 - Ultimate Limit States (SLV and SLC): NTC (2018)

• Kurukulasuriya et al. (2022) Investigation of seismic behaviour of existing masonry infills through combined cyclic in-plane and dynamic out-of-plane tests, 9th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering

Analytical-Empirical DS Harmonisation

Quantitative Damage States

Qualitative Damage States

Norme Tecniche Per Le Costruzioni (2018)

Agibilità e Danno nell' Emergenza Sismica

Analytical Fragility Functions

Empirical Fragility Functions

• Empirical fragility functions are the end result of convolving two layers of information in combination with robust statistical tools

➤ Observed damage to buildings

➤ Ground-motion fields (GMFs)

1-5 July 2024

Observed Building Damage

DaDO: Database of Observed Damage

- Friuli 1976
- Irpinia 1980
- Abruzzo 1984
- Umbria-Marche 1997
- Pollino 1998
- Molise-Puglia 2002
- Emilia 2003
- L'Aquila 2009
- Emilia 2012
- Garfagnana-Lunigiana2013
- Central Italy 2016 2017
- Mugello 2019

Observed Building Damage

Building characteristics and spatial distributions (DaDO)

Inspected Building Locations

Ground-Motion Fields

- Physically realistic ground-motion fields are a combination of:
 - Handling of ground-motion models (GMMs) for the estimation of spectral intensities (Bindi et al. 2011) and indirect approach highlighted in Kohrangi et al. 2018 to estimate Sa_{ava} values and the total associated uncertainty
 - Conditioning of GMMs on seismic station data (ITACA) to account for "ground-truth" in the within-event uncertainty (Engler et al. 2022)
 - Spatial correlation to consider the spatial dependence in the joint probability distribution function of an intensity measure given a rupture scenario
 - Cross-correlation between IMs to consistently sample ground-shaking intensities from a GMM distribution over multiple IMTs and preserving the spectral shape properties

- Bindi, D., Pacor, F., Luzi, L. et al. Ground motion prediction equations derived from the Italian strong motion database. Bull Earthquake Eng 9, 1899–1920 (2011). https://doi.org/10.1007/s109ftpsi/9github.com/gem/oq-engine/tree/master/openquake/hazardlib/
- Paprisatifing a Koubara policity of the company of

Ground-Motion Fields Validation

11

Sa_{avg}-based Ground-Motion Fields

 Sa_{avg} (0.25s)-based GMFs for Low-Rise Buildings

 Sa_{avg} (0.50s)-based GMFs for Mid-Rise Buildings

Empirical Fragility Functions

• The dispersion values associated with the fitted empirical Sa_{avg} -based fragilities were compared to dispersions considering conventional IMs such as $Sa(T_1)$ and PGA

• A good match between analytical and empirical FFs with regards to the serviceability DSs (i.e., operational and damage limitation) was observed, with reasonable errors varying between 0 and 16%.

• A good match between analytical and empirical FFs with regards to the serviceability DSs (i.e., operational and damage limitation) was observed, with reasonable errors varying between 0 and 16%.

• For the life-safety and near-collapse DSs, it can be seen that the analytical FFs tended to consistently overestimate the median intensities with respect to the empirical observations

• For the life-safety and near-collapse DSs, it can be seen that the analytical FFs tended to consistently overestimate the median intensities with respect to the empirical observations

- Quality of data particularly for the 1997 Umbria-Marche earthquake sequences, and the AeDES form before 2002:
 - ➤ Inability to encompass all potential structural component types;
 - > Equal classification of the seismic behaviour among typologies that appeared similar aesthetically
- Damage accumulation in buildings following earthquake sequences
 - ➤ Data was collected following the conclusion of EQ sequences
 - ➤ Highlights the importance of input energy, hysteretic energy dissipation and proper ground motion record selection to characterise response to mainshock-aftershock sequences
- Uncertainty in the ground-shaking prediction and site conditions (e.g., Vs30)
- Harmonization in the DS definition between Italian code and macro-seismic scales
- Bias in data collection due to the differences in DS perception from one evaluator to another

Questions?

CENTRE FOR TRAINING AND RESEARCH ON REDUCTION OF SEISMIC RISK