

Correlation models for next-generation amplitude and cumulative intensity measures using artificial neural networks

Savvinos Aristeidou¹, Davit Shahnazaryan², Gerard J. O'Reilly³

1 - PhD candidate, IUSS Pavia, Italy

2 - Postdoctoral Researcher, IUSS Pavia, Italy

3 – Associate Professor, IUSS Pavia, Italy

Introduction

- Plethora of intensity measures (IMs) to characterise the intensity of a ground motion
 - Traditionally, only Sa is explicitly considered in seismic risk analyses
 - Filtered incremental velocity, *FIV*3, was shown to be an excellent IM in predicting the collapse of structures
 - Average spectral acceleration, Sa_{avg} , was shown to be well-correlated with a wide range of structural response
 - Significant duration, Ds, was found to influence the structural damage due to cumulative effects
- Correlation models between a few aforementioned IMs are still missing from the literature
- Required for vector-based PSHA and ground motion record selection (e.g., GCIM method).
- Predictive models of the empirical correlation coefficients were developed using artificial neural networks (ANNs)

Correlation models developed (IM pairs)

- *PGA*: peak ground acceleration
- *PGV*: peak ground velocity
- <u>Sa(T)</u>: 5%-damped spectral acceleration at a vibration period, *T*. Period range: 0.01 s to 5 s
- $\underline{\textit{Ds}}_{xy}$: x-y% significant duration. The proposed models include $\{x, y\} = \{5\%, 75\%\}$ and $\{x, y\} = \{5\%, 95\%\}$
- <u>Sa_{avg}(T)</u>: average spectral acceleration, for two different period ranges. Sa_{avg2}: 0.2 T-2 T; Sa_{avg3}: 0.2 T-3 T. Period range: 0.1 s to 4 s.
- *FIV3(T)*: filtered incremental velocity, defined by Dávalos and Miranda (2019). Period range: 0.1 s to 4 s

RotD50 for: *PGA*, *PGV*, *Sa*, and *Sa*_{avg}

Geometric mean for: Ds and FIV3

Total of 24 cross-correlation models

IM_i IM_j	Sa	Sa_{avg2}	Saavg3	PGA	PGV	D \$575	D\$595	FIV3
Sa	ASO24, BJ08, ASA14, BB17	ASO24, CB14 & BJ08*, CB14 & ASA14*	ASO24, CB14 & BJ08*, CB14 & ASA14*	BB17, TBB23	BB17, TBB23	ASO24, B11, BB17	ASO24, B11, BB17	ASO24
Sa_{avg2}		ASO24	ASO24	ASO24	ASO24	ASO24	ASO24	ASO24
Saavg3			ASO24, DM21	ASO24	ASO24	ASO24	ASO24	ASO24
PGA					BB17, TBB23	BB17, TBB23, B11	BB17, TBB23, B11	ASO24
PGV						BB17, TBB23, B11	BB17, TBB23, B11	ASO24
D\$575							BB17, TBB23, B11	ASO24
DS 595								ASO24
FIV3								ASO24

Database and ground motion model

- Single generalised ground motion model (GGMM) was used: Aristeidou et al. (2024) ASO24
- NGA-West2 database, with the same filtering criteria as ASO24
- 4,135 ground motion records from 102 earthquakes
- Empirical distributions of normalised inter- and intra-event residuals are shown in the figure below. They are compared with the Kolmogorov-Smirnov (KS) goodness-of-fit bounds at 5% significant level

Methodology

- From the GMM and filtered ground motion database
- Residuals are computed for each record

$$\log_{10} IM_i = f_i(X, \boldsymbol{\theta}) + \delta b_i \tau_i + \delta w_i \varphi_i$$
$$\delta_i \sigma_i = \delta b_i \tau_i + \delta w_i \varphi_i$$

$$\delta_{i,g} = \frac{\log_{10} IM_{i,g} - \mu_{\log_{10} IM_i|X,\theta}}{\sigma_i}$$

$$\rho_{\delta_i,\delta_j} = \frac{\rho_{\delta b_i,\delta b_j} \tau_i \tau_j + \rho_{\delta w_i,\delta w_j} \varphi_i \varphi_j}{\sigma_i \sigma_i}$$

$$\rho_{\log_{10} IM_i|X,\theta,\log_{10} IM_j|X,\theta} = \rho_{\delta_i,\delta_j}$$

Artificial neural network architecture

- Empirical correlation coefficient regressed with ANN
- ANN has the advantage of not needing predefined analytical functions
- It minimises the misfit between observed and predicted values
- Optimal hyperparameters for each model were chosen

Correlation between an $\mathrm{IM_{i}}\text{-}\mathrm{IM_{j}}$ pair for the case of one hidden layer:

$$\rho_{\log_{10} IM_i, \log_{10} IM_j} = f_{activation2} \left[b_r + \sum_{h=1}^{n_h} W_{h,r} \cdot f_{activation1} \left(b_h + \sum_{p=1}^{n_p} W_{p,h} X_p \right) \right]$$

Schematic representation of the network for the case of *Sa-FIV*3 correlation model:

Results - Correlations between traditional IMs

Results - Correlations between traditional IMs

Results – Correlations between traditional and next-generation IMs

Results – Correlations between traditional and next-generation IMs

Results – Correlations between next-generation IMs

Results – Correlations between next-generation IMs

Discussion and conclusions

- This study presented the empirical correlations between miscellaneous IMs finding use in contemporary risk analyses (24 IM pairs in total)
- Regarding *FIV*3:
 - Strongly correlated with *Sa*(*T*=0.6-3s)
 - Very well correlated with itself across all periods
 - Weak negative correlation with duration at short periods and near-zero correlation at longer periods
 - *Ds FIV*3 has similar trend with *Ds Sa*, but with a slightly weaker negative correlation (i.e., taking values closer to 0)
 - FIV3 Sa_{avg} very similar with FIV3 Sa
- Direct correlation of Sa_{avg} with itself and other IMs \rightarrow allowing for a more consistent ground motion record selection, rather than the indirect method
- Predictive models based on regression with ANN. Has not been used before for fitting IM cross-correlation models
- The procedure adopted and the network architecture can be seamlessly adapted to develop correlation models for other IMs and/or horizontal component definitions

Aristeidou, S., Shahnazaryan, D. and O'Reilly, G.J. (2024) 'Correlation Models for Next-Generation Amplitude and Cumulative Intensity Measures using Artificial Neural Networks', Earthquake Spectra (Accepted)

Thank you!

Correlations models are available to use at:

https://github.com/Savvinos-Aristeidou/ANN_correlation_models.git

Questions?

Soon to be implemented in OpenQuake

CENTRE FOR TRAINING AND RESEARCH ON REDUCTION OF SEISMIC RISK