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Seismic Assessment of Structures

• PEER performance-based earthquake engineering method is a 4 step convolution 
of:


• Hazard Analysis


• Structural Analysis


• Damage Analysis


• Loss Analysis
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Seismic Assessment of Structures

• PEER performance-based earthquake engineering method is a 4 step convolution 
of:


• Hazard Analysis


• Structural Analysis


• Damage Analysis


• Loss Analysis

How do different considerations 
effect the decision?
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Relevance of Modelling Decisions in 
Assessment of RC Structures

• The modelling of joints as either rigid 
zones or no consideration at all is now 
recognised as being grossly inadequate 
in numerical analysis of structures.


• Paulay & Priestley [1992] reported that 
joint deformation alone can account for 
as much as 20% of the inter storey 
deflection in a structure.

4



Relevance of Modelling Decisions in 
Assessment of RC Structures

• Models such as Lowes et al. 
[2003] can be used to consider 
a joint that is well detailed 
according to modern design 
codes.


• Pampanin et al. [2002] noted 
how RC structures constructed 
in Italy prior to seismic codes 
resulted in a lack of shear 
reinforcement and hence a 
shear failure mechanism.

5 Pampanin et al. [2002]



Relevance of Modelling Decisions in 
Assessment of RC Structures

• Past observations of damage in Italy have shown extensive 
damage to beam column joints due to a lack of shear 
reinforcement.
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Relevance of Modelling Decisions in 
Assessment of RC Structures

• Experimental testing of beam-
column members with plain bars 
and poor concrete demonstrates 
a pinched hysteretic behaviour.


• In addition, the ductility capacity 
is significantly influenced by the 
presence of plain bars.


• Calvi et al. [2002] have noted that 
the presence of smooth bars can 
result in a reduction is flexural 
capacity of members.

Testing by Di Ludovico et al. showed plain 
bar members had ~40% more ductility 

capacity.
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Case Study Structure

• RC frame designed according to 
Regio Decreto 2229/39.


• Full design outlined in Piazza 
[2013].
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• fc’=12MPa @ 28 days.


• Plain bars with hook-ends.


• Stirrups closed at 90° with large spacing.


• Beam and column sections same at all floors.


• 100mm thick weak clay infill.
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Modelling?
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Plan View Front View Side View

• How are the various components associated with older buildings in 
Italy modelled?



Modelling?
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Modelling?

3m

3m

3m

4.5m 4.5m3.5m2m4.5m

2+2
Φ14

Φ6@120mm

250mm

25
0m
m

2Φ12
2Φ14

Φ6@140mm

300mm

50
0m
m

2Φ12

800mm 12Φ14

20
0m
m

6Φ14

Φ6@100mm

Interior/Exterior 

Beam-Column Joints?

Beam-Column 

Members?

11

Plan View Front View Side View



Modelling?
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Beam-Column Joints
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Beam-Column Joints

• Model developed using 
OpenSees and is based on 
previous modelling approach 
by Pampanin et al. [2002].


• Shear hinge parameters 
calibrated considering 
principle tensile stress 
observed in test data for both 
exterior (18 tests) and interior 
joints (9 tests).


• Cyclic degradation 
parameters matched with 
experimental data.
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Beam-Column Joints
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ModelExperiment

• Calibrate with tests available in literature.


• Strength, stiffness and degradation well 
represented by joint model.
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Beam-Column Members

• Modelling using lumped 
plasticity beamWithHinges 
element in OpenSees.


• Hinge modelled using 
Pinching4 hysteretic material.


• Plastic hinge length as per 
Paulay & Priestley [1992].


• Bar slip hinge as per Metelli et 
al. [2015].
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Beam-Column Members
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Model Validation

• 2/3 scale 3 storey RC frame tested by Calvi et al. [2002] used to 
validate modelling.


• Frame subject to quasi-static pushover cycles of increasing 
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Model Validation
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Model Experiment

• Numerical model matches the 
observed response very well.


• Seen through the match in 
lateral capacity, stiffness and 
hysteretic behaviour.


• Displaced shape matched very 
well also, where the shear 
mechanism in the joints at the 
first floor is captured.



Infill Modelling

• Model is based on equivalent strut model proposed by Rodrigues et al. 
[2010].


• Hysteretic parameters determined from expression proposed by Dolsek & 
Fajfar [2008].


• Openings for doors and windows are accounted for by a reduction in 
20



Fragility Analysis
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Plan View Front View Side View

• Conduct a stripe analysis at 2 different return periods for a 
range of model variations to examine their affect on typical 
response parameters.



Variations in Structural Model
• Reference Model - Full modelled.


• Ductile Members - Use BC member 
parameters by Haselton et al. [2008] for 
ductile members.


• No bar slip effects -  Bar slip elements 
removed and capacity of members 
reduced according to Calvi et al. [2002].


• No Joint Detail - No aspects of the 
joints are modelled.


• Elastic Damping - Damping is varied 
between 2, 3 and 5%.


• Masonry Infills - The above both with & 
without infill modelling.
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Seismic Hazard & Ground Motions

• Site considered is in Napoli, Italy.


• Conditional Mean Spectra developed by Ay 
et al. [2015] for sets of conditioning period 
(T*) and return period (Tr).


• Ground motion set selected in relation to first 
mode T1 of the structure
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Dynamic Analysis of Structures

24

Bare Model

Infill Model

Full Modelling

Ductile Members

No Bar Slip

No Joint Detailing

Elastic Damping

Set of 30 records

at T* for TR=475yrs


and 2475yrs



Dynamic Analysis of Structures
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Dynamic Analysis of Structures
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Dynamic Analysis of Structures
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Dynamic Analysis of Structures
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Dynamic Analysis of Structures
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Bare Frame Model Results

• Lack of joint detail results in increased storey drift.


• Addition of infills is by fare the most influential parameter.
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• At the 2475 year 
return period, roof 
drift is close to yield 
drift.


• Structure is exhibiting 
limited ductility.
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• At the 2475 year 
return period, roof 
drift is close to yield 
drift.


• Structure is exhibiting 
limited ductility.
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• Ignoring the effects of bar slip leads to a decrease in 
drift.
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• Influence of ductile members not so apparent since 
this difference was in ductility capacity. Low ductility 
here.
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• Low ductility results in difference between ductile 
members and full model being quite small.
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Infill Frame Model Results

• Infilled frames show little difference between models.
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• Max roof drift at 2475 years is ~0.15%.


• Difference would be more pronounced in 
ductile range. 


• Collapse capacity would differ also.


• Dolsek & Fajfar [2008] previously noted 
that unless infill exceeds peak then it 
tends to dominate the response.
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Elastic Damping Results

• Influence of elastic damping is quite large.
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• Similarly for infill case, whose response is essentially elastic.
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Observations
• Lack of joint consideration results in an increase in 

response.


• Omitting the effects of bar slip on flexibility and 
capacity results in a decrease in response.


• Little influence of using ductile members due to low 
ductility demand.


• Similarly for infill frame cases.


• Elastic damping has a noticeable influence on 
response.
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Conclusions

• Relevance of modelling decisions in assessment 
discussed. 


• Methods of accounting for joint and member 
behaviour associated with older Italian RC frames 
presented.


• Accounting for joint behaviour was seen to be quite 
influential, given the low ductility levels.


• Further collapse studies could provide a clearer 
insight.
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Thank you



Seismic Hazard & Ground Motions
• Ground motion sets at 

T*=0.3s and 1.5s are 
selected.


• These are selected at a TR 
of 475yrs and 2475yrs for 
the numerical analysis.
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Seismic Hazard & Ground Motions
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