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Seismic Assessment of Structures

* PEER performance-based earthquake engineering method is a 4 step convolution
of:

* Hazard Analysis

% How do different considerations
effect the decision?

e Structural Analysis

 Damage Analysis

* Loss Analysis

Facility Hazard ( Damage ) ( Loss )

¢ EER Rt l\‘
/( Structural Y}

Information Analysis Analysis Analysis Analysis
Site, Design, Hazard | Structural Fragility Loss
Component Model : Model M Development Model
Inventory AlIM| D] | plEDPIM] § p[DM | EDP] p[DV|DM]
, Decision
Facility Site Hazard . Structural Damage Loss DV’s are
Definition A[IM|D] | Response | Response > Response acceptable
D | AlEDPID] | A[DM| D] A[DV|D] for D?
\ 2R W
D: Geotechnical IM: Intensity EDP: DM: Damage DV: Decision
investigation, Measure, Engineering Measure, Variable,
Structural and e.g. spectral Demand e.g. cracking, e.g. repair costs,
architectural acceleration, Parameter, spalling, collapse
details S.(T,) e.g. storey drift collapse probability

3



Relevance of Modelling Decisions in
Assessment of RC Structures

* The modelling of joints as either rigid
zones or no consideration at all is now
recognised as being grossly inadequate
iNn numerical analysis of structures.

 Paulay & Priestley [1992] reported that
joint deformation alone can account for
as much as 20% of the inter storey
deflection in a structure.




Relevance of Modelling Decisions in
Assessment of RC Structures

external node — m——gode3 bar-slip
* Models such as Lowes et al. %%/ spring (1yp)
[2003] can be used to consider ©
a joint that is well detailed Node 4y = () shear pane! ¢ Node 2
according to modern design 20
CO d es. internal node

Node 1 interface-shear
spring (typ.)

 Pampanin et al. [2002] noted
how RC structures constructed
In Italy prior to seismic codes
resulted in a lack of shear
reinforcement and hence a
shear failure mechanism.

5 Pampanin et al. [2002]




Relevance of Modelling Decisions in
Assessment of RC Structures

[Photos from www.reluis.it]

* Past observations of damage in Italy have shown extensive
damage to beam column joints due to a lack of shear

reinforcement.
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Relevance of Modelling Decisions in
Assessment of RC Structures

~

* Experimental testing of beam-
column members with plain bars
and poor concrete demonstrates
a pinched hysteretic behaviour.

. . . Testing by Di Ludovico et al. showed plain
* [naddition, the ductility capacity / bar members had ~40% more ductility

s significantly influenced by the capacity.

presence of plain bars.

e (Calvi et al. [2002] have noted that

5008
the presence of smooth bars can . , ‘\\j
result in a reduction is flexural P v B
capacity of members. o2 |—of o

k=1.0
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Case Study Structure
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 Stirrups closed at 90° with large spacing.
* Full design outlined in Piazza e Beam and column sections same at all floors.
12013]. . -
* 100mm thick weak clay infill.




Modelling”
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* How are the various components associated with older buildings in
ltaly modelled?
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Modelling”
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Modelling”
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Beam-Column Joints
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Beam-Column Joints
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* Model developed using
OpenSees and is based on
previous modelling approach
by Pampanin et al. [2002].

e Shear hinge parameters

calibrated considering
principle tensile stress
observed in test data for both
exterior (18 tests) and interior
joints (9 tests).

* Cyclic degradation

parameters matched with
experimental data.
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Beam-Column Joints
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e Calibrate with tests available in literature.

e Strength, stifftness and degradation well

represented by joint model.
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Beam-Column Members
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Modelling using lumped
plasticity beamWithHinges
element in OpenSees.

Hinge modelled using
Pinching4 hysteretic material.

Plastic hinge length as per
Paulay & Priestley [1992].

Bar slip hinge as per Metelli et
al. [2015].



Beam-Column Members
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Model Validation
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e 2/3 scale 3 storey RC frame testeEJI by Calvi et al. [2002] 4used to
validate modelling.

* Frame subject to quasi-static pushover cycles of increasing
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Force [kN]

Model Validation
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Model Experiment

Numerical model matches the
observed response very well.

Seen through the match in
lateral capacity, stiffness and
hysteretic behaviour.

Displaced shape matched very
well also, where the shear
mechanism in the joints at the
first floor is captured.



Infill Modelling

Struts
_— Force (kN)

/
/ Central

element

Inter-Storey
drift (0/0)

Model is based on equivalent strut model proposed by Rodrigues et al.
[2010].

Hysteretic parameters determined from expression proposed by Dolsek &
Fajtar [2008].

Openinas for doors and windows are accounted for by a reduction in
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Fragility Analysis
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 Conduct a stripe analysis at 2 different return periods for a
range of model variations to examine their affect on typical
response parameters.
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Variations in Structural Model

Reference Model - Full modelled.

Ductile Members - Use BC member
parameters by Haselton et al. [2008] for
ductile members.

No bar slip effects - Bar slip elements
removed and capacity of members

reduced according to Calvi et al. [2002].

No Joint Detail - No aspects of the
joints are modelled.

Elastic Damping - Damping is varied
between 2, 3 and 5%.

Masonry Infills - The above both with &

without infill modelling.
22
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Seismic Hazard & Ground Motions

'?254' ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA
e

Mappa di pericolosita sismica del territorio nazionale
(riferimento: Ordinanza PCM del 28 aprile 2006 n.3519, All.1b)
espressa in termini di accelerazione massima del suolo

con probabilita di eccedenza del 10% in 50 anni
riferita a suoli rigidi (Vss> 800 m/s; cat.A, punto 3.2.1 del D.M. 14.09.2005)
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Site considered is in Napoli, Italy.

Conditional Mean Spectra developed by Ay
et al. [2015] for sets of conditioning period
(T*) and return period (Ty).

Ground motion set selected in relation to first
mode T4 of the structure
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Dynamic Analysis of Structures

Full Modelling
Bare Model
Set of 30 records Ductile Members
at T* for Tr=475yrs —
and 2475yrs .
y Infill Mode! No Bar Slip

No Joint Detailing

Elastic Damping
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Dynamic Analysis of Structures

Full Modelling
Bare Model
Set of 30 records Ductile Members
at T* for Tr=475yrs —
and 2470yrs Infill Mode! No Bar Slip
TR
2475 No Joint Detalling
475 Elastic Damping
Global
Response

Parameter
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Dynamic Analysis of Structures

Full Modelling
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Dynamic Analysis of Structures

Full Modelling
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Dynamic Analysis of Structures

Full Modelling
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Dynamic Analysis of Structures

Full Modelling
Bare Model
Set of 30 records Ductile Members
at T* for Tr=475yrs —
and 2475yrs .
y Infill Mode! No Bar Slip
TR

Model A Model B

® L J 0000 9—&

2475

No Joint Detailing

475

Elastic Damping

Global
Response
Parameter
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Bare Frame Model Results
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e Lack of joint detail results in increased storey drift, =
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* Addition of infills is by fare the most influential parameter. ===-
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Bare Frame Model Results
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Bare Frame Model Results

2475 —= 7 U
" ’

Z .
2 /
g .
5 47518 -
A N
s — e
= T il
= mmmm | re (Ductile Members)

== =B e (No Bar Slip)

mmmm Bi - (No Joint Detail)

[ I I

I
0 0.2 04 0.6 8 1 1.7 14
Roof Drift | %]

 Atthe 2475 year
return period, roof

drift is close to yield
drift.

e Structure is exhibiting
imited ductility.
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Return Period [years]

Bare Frame Model Results
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Bare Frame Model Results
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Bare Frame Model Results

475yrs 2475yrs
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* |gnoring the effects of bar slip leads to a decrease in
drift. s
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Bare Frame Model Results

475yrs 2475yrs
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* |nfluence of ductile members not so apparent since
this difference was in ductility capacity. Low ductility
here, ==
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Bare Frame Model Results
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* Low ductility results in difference between ductile
members and full model being quite small. =
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Infill Frame Model Results

475yrs
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e |nfilled frames show little difference between models.
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Return Period [years]

Infill Frame Model Results
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Max roof drift at 2475 years is ~0.15%.

Difference would be more pronounced in
ductile range.

Collapse capacity would differ also.
Dolsek & Fajfar [2008] previously noted

that unless infill exceeds peak then it
tends to dominate the response.
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Elastic Dampin
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* Influence of elastic damping is quite large.
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Infill Frame Model Results
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o Similarly for infill case, whose response is essentially elastic.
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Observations

Lack of joint consideration results in an increase in
response.

Omitting the effects of bar slip on flexibility and
capacity results in a decrease In response.

Little influence of using ductile members due to low
ductility demand.

Similarly for infill frame cases.

Elastic damping has a noticeable influence on
response.
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Conclusions

Relevance of modelling decisions in assessment
discussed.

Methods of accounting for joint and member
behaviour associated with older ltalian RC frames
presented.

Accounting for joint behaviour was seen to be quite
influential, given the low ductility levels.

Further collapse studies could provide a clearer
iInsight.
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Seismic Hazard & Ground Motions

e Ground motion sets at
1*=0.3s and 1.5s are

selected.

e These are selected at a TR

0.8

o o
N 3

o
n
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Pseudo—Spectral Acceleration [g]
o
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of 475yrs and 2475yrs for \ &
the numerical analysis. g 4} |
OO 500 1000 1500 2000 2500
Return Period [years]
Bare Frame Infill Frame
Ductile No Bar : Ductile No Bar :
Mode Full Members \Slip No Joint Full Members Slip No Joint
1 1.49 1.36 1.34 1.66 0.23 0.23 0.23 0.23
2 0.52 0.47 0.46 0.58 0.08 0.08 0.08 0.08
3 0.32 0.29 0.28 0.38 0.05 0.05 0.05 0.06
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Seismic Hazard & Ground Motions
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