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Abstract
Inter and intra-site correlation of ground-motion intensity measures (IMs) plays a critical 
role in seismic hazard and risk assessment. Ignoring such correlations can lead to signifi-
cant misrepresentation of losses in regional-scale studies and misrepresentation of ground 
motion field simulations. Accurate correlation modelling is essential for scenario-based 
risk assessments, emergency preparedness planning, and understanding systematic infra-
structure vulnerabilities in portfolio risk analyses. This study presents a detailed overview 
of intra-site (non-spatial) and inter-site (spatial) correlation models developed over the past 
two decades. It reviews over 45 models proposed in the literature, encompassing diverse 
methodologies applied to different regional databases and a variety of IM. The analyses 
reveal considerable variability among models, particularly in short-range spatial correla-
tion and in how inter-IM correlations are treated. Despite this diversity, most models rely 
on simplifying assumptions such as stationarity and isotropy, which may not fully capture 
the complexities of real-world ground motion patterns. This work provides a valuable 
resource for researchers and practitioners by summarising the current state of correlation 
modelling and offering guidance on model selection based on database, regional context, 
and engineering application. It underscores the importance of informed model choice for 
improving the accuracy of hazard and risk assessments in spatially distributed systems.

Keywords  Seismic risk · Correlation · Spatial correlation · Regional assessment · 
Intensity measures

1  Introduction

In seismic risk assessment studies, the correlation of ground shaking plays a significant role, 
particularly in understanding how different intensity measures (IMs) relate to one another 
both at the same site location and spatially across several locations. These models have 
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several applications in seismic risk analyses. In ground motion selection procedures, such 
as the conditional spectrum (CS) method (Lin et al. 2013; Baker and Lee 2018) and the gen-
eralised conditional intensity measure (GCIM) method (Bradley 2010), correlations are key 
parameters for matching the statistical characteristics of target distributions. Additionally, 
spatial correlation models are critical for generating spatially coherent ground motion fields, 
which are essential for simulating earthquake shaking over broad geographic areas (e.g., 
Bradley 2014; Weatherill et al. 2014, 2015) and for performing loss estimation for spatially 
distributed assets (e.g., Park et al. 2007).

The study of correlations can be broadly classified into two categories: inter-site correla-
tion (herein termed spatial correlation), which examines dependencies between the shaking 
intensity at different site locations; and intra-site correlation (herein termed non-spatial cor-
relation), which focuses on relationships in ground shaking at a single site location. These 
spatial and non-spatial correlation models can be further distinguished according to the IMs 
they address, with models mapping a single IM referred to as same IM models herein, and 
cross IM models refer to when different IMs are mapped. Table 1 categorises these and lists 
the numbers of studies reviewed here based on whether they address intra- or inter-site cor-
relations, as well as whether same or cross IMs.

This review provides a summary of existing research in correlation modelling using a 
wide range of methodologies and databases over the past two decades. Over 40 different 
studies were reviewed and are critically discussed herein. A detailed description of the data-
base, methodology, IMs, and correlation types is summarised in a table hosted on GitHub 
and referenced in Sect. 7. The overall goal is to provide a background and relative compari-
son of the various models developed, their scope and possible limitations for seismic risk 
analysts looking to implement them in different contexts.

2  Background and structure

Before diving into the different studies that are reviewed in the following sections, several 
background aspects common to most studies are first presented. These relate to the IMs 
adopted, the ground motion databases utilised, the methods to model and compute correla-
tion, and the techniques applied to fit and produce usable models for seismic engineering 
applications.

A general overview is illustrated in Fig. 1. The first distinguishing aspect is between 
spatial and non-spatial correlation, followed by whether the same or different IMs were 
investigated. Consequently, the main body is divided into three main sections, beginning 
with non-spatial correlation with different IMs in Sect. 3. This is followed by Sect. 4 that 
introduces spatial correlation modelling for the same IMs, followed by Sect. 5 that examines 
spatial correlation for different IMs. The redundant case of non-spatial correlation for the 
same IM is not discussed.

Same IM Cross IMs
Intra-site - 13
Inter-site 25 8

Table 1  Number of intra- and 
inter-site models for same and 
cross IMs
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2.1  Intensity measures

The choice of IM when conducting probabilistic seismic hazard analysis (PSHA) or seismic 
fragility and vulnerability modelling is a pertinent aspect that depends on several crite-
ria. These often relate to the specific nature of the structural systems analysed, the analy-
sis approach used, and the broader goals of the study. The purpose of this article is not 
to explore these motivations in detail, but rather to note that a variety of IMs exist, each 
serving different purposes. These can be broadly categorised as peak amplitude or cumula-
tive IMs. Examples of peak amplitude IMs include peak ground acceleration, PGA, peak 
ground velocity, PGV , peak ground displacement, PGD, spectral acceleration at differ-
ent periods, Sa(T ), for example. Examples of cumulative IMs include Arias intensity, Ia, 
significant duration, Ds575 and Ds595, cumulative absolute velocity, CAV , acceleration 
spectrum intensity, ASI , spectrum intensity, SI , and displacement spectrum intensity, 
DSI . Another group of so-called next-generation IMs have been the focus of much research 
in recent years, offering several advantages when characterising risk in different settings. 
Examples include average spectral acceleration, Saavg(T ), and filtered incremental veloc-
ity, FIV 3(T ), which will be discussed further below.

The Husid plot (Husid 1969) represents the cumulative Ia normalised by the total Ia 
and is defined as: 

	
H(t) = 1

Ia

ˆ t

0
[a(τ)]2 dτ × 100%� (1)

where a(t) is the ground acceleration, and Ia is given by: 

	
Ia =

ˆ T

0
[a(t)]2dt� (2)

Fig. 1  Overview of correlation modelling for seismic shaking
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The significant duration Dsxy  is then defined as the interval between instants tx and ty  at 
which the Husid plot reaches x% and y% of Ia, respectively: 

	 Dsxy = ty − tx� (3)

Average spectral acceleration, Saavg(T ), is computed as the geometric mean of N  spectral 
acceleration values within a range of periods: 

	

Saavg(T ) =

(
N∏

i=i

Sa(ciT )

) 1
N

ln Saavg(T ) = 1
N

N∑
i=1

ln Sa(ciT )

� (4)

where Sa(ciT ) corresponds to the 5%-damped spectral acceleration value, N  = 10 typically, 
ci is a factor ranging uniformly from 0.2 to 2.0 and 0.2 to 3.0 for what were termed (Shahn-
azaryan and O’Reilly 2024) Saavg2(T ) and Saavg3(T ), respectively.

The filtered incremental velocity metric, FIV 3(T ), proposed by Dávalos and Miranda 
(2019), has shown promising results regarding the efficiency and sufficiency in character-
ising the collapse performance of buildings. It captures the cumulative effect of ground 
motion pulses by integrating a filtered acceleration signal over a sliding time window. This 
IM can be briefly explained as: 

	 FIV 3(T ) = max{Vs,max1 + Vs,max2 + Vs,max3; |Vs,min1 + Vs,min2 + Vs,min3|}� (5)

	
Vs(t) =

ˆ t+αT

t

ügf (t) dt, ∀t < tend − αT � (6)

where Vs(t) represents a sequence of incremental velocity (IV) values computed over mov-
ing time windows of length of αT . From this series, the three largest and three smallest 
local extremes, Vs,max1, Vs,max2, Vs,max3 and Vs,min1, Vs,min2, Vs,min3, respectively, are 
extracted. The variable T  corresponds to the period of interest, implying it is a period-
dependent IM, while tend denotes the final time step of the acceleration time history. The 
acceleration signal ügf  is obtained by applying a second-order Butterworth low-pass filter 
to the original motion, using a cut-off frequency fc = βf , where f = 1/T  and β is a scal-
ing factor.

When evaluating correlations between spectral acceleration, Sa(T ), an important con-
sideration is the orientation of horizontal ground motion components. A common practice is 
to take the geometric mean of the two orthogonal station recordings, Sagm(T ). However, 
this is sensitive to the initial orientation in which the components were recorded. Boore 
(2010) introduced rotated measures such as SaRotD50(T ) and SaRotD100(T ). The RotD50 
definition represents the median (50th percentile) across all non-redundant orientations 
of the horizontal ground motion, effectively capturing a typical directional response. In 
contrast, the RotD100 definition corresponds to the maximum Sa(T ) observed across all 
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orientations, representing a conservative, envelope-type estimate. Where relevant, the ori-
entation of these IMs will be specified herein.

2.2  Ground motion databases

Another aspect is the database of ground motions utilised. These can range from the classi-
cal approach of using natural ground motions, albeit with some filtering and correction tech-
niques applied, recorded from notable past earthquakes, or using simulated ground motion 
recordings obtained from physics-based simulations (PBS).

Several correlation models have been developed using different ground motion data-
bases. Knowing which databases were considered can help engineers and researchers apply 
a model to a specific region. A table summarising the databases used for the correlation 
models reviewed in this study, along with additional relevant detail, is available on GitHub 
(see Sect. 7).

In recent years, the increasing availability of computational resources has significantly 
enhanced the capability of PBS to simulate earthquake ground shaking with a high degree 
of physical realism. These simulations, grounded in the numerical solution of the elastody-
namic equations, offer a valuable alternative to recorded ground motion data, particularly 
in regions with sparse instrumentation or complex geology (e.g., Chen and Baker 2019; 
Infantino et al. 2021; Schiappapietra and Smerzini 2021; Lin and Smerzini 2022; Zolfaghari 
and Forghani 2024). A more detailed discussion is provided in Sect. 4.

Lastly, it is important to note that all correlation models discussed in this work pertain to 
mainshock events, where the issue of aftershocks has not been included in the review, but 
several studies have examined these (e.g., Zhu et al. 2017; Papadopoulos et al. 2019; Ming-
Yang and Da-Gang 2024).

2.3  Ground motion models and residuals

Correlation modelling, both spatial and non-spatial, relies on the use of appropriate ground 
140 motion models (GMMs). GMMs are essential to provide estimates of ground shak-
ing intensity as a function of earthquake rupture characteristics, path effects, and local site 
conditions. They typically follow a lognormal distribution as a function of explanatory vari-
ables and a residual term, generally written as: 

	 ln IMi,k,m = µi(Xk,m, θ) + δti,k,m · σi� (7)

where, ln IMi,k,m is the natural logarithm of ith IM for event k and recording site m, 
µi(Xk,m, θ) is the mean value from the GMM based on explanatory variables Xk,m (e.g., 
moment magnitude, Mw, Joyner-Boore distance, Rjb, site conditions, Vs30, etc.), and 
model parameters, θ. δti,k,m and σi are the normalised total residual and the total standard 
deviation in logarithmic space, respectively. To better separate sources of variability, mod-
ern GMMs often use mixed-effects regression models (Abrahamson and Youngs 1992), 
which decompose the total variability into between- and within-event components using 
δti,k,m · σi = δbi,k · τi + δwi,k,m · ϕi, noting that the m subscript is dropped from τ  since 
it is invariant for all site locations between events. The form of such a model is written: 
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ln IMi,k,m = µi(Xk,m, θ) + δBi,k + δWi,k,m

= µi(Xk,m, θ) + δbi,k · τi + δwi,k,m · ϕi
� (8)

where δbi,k and δwi,k,m correspond to the normalised between-event and within-event 
residuals. τi and ϕi are the between-event and within-event logarithmic standard devia-
tions, respectively.

Although this representation aligns with standard mixed-effects formulations, it is worth 
noting that the separation of the residual components becomes more nuanced when the 
GMM includes non-linear site-response terms. In such cases, the between-event variabil-
ity interacts with the non-linear site amplification rather than passing through the model 
unchanged (e.g., Chiou and Youngs 2008, 2014; Atik and Abrahamson 2010). This interac-
tion means that the within-event and between-event terms are not strictly additive, which 
in turn can influence how correlations should be interpreted or applied. From a practical 
perspective, users applying existing spatial correlation or non-spatial correlation models 
to GMMs with non-linear site terms should be aware that most correlation models were 
derived assuming linear site behaviour. As a result, some deviation in the effective within-
event variability is expected, and performing basic sensitivity checks may be advisable 
when non-linear site effects are significant.

Correlation models are typically developed based on within-event residuals, comparing 
the observed ground GMM’s prediction, rather than the absolute IM value recorded. Specifi-
cally, the correlation models analysed in this study are based on two types of residuals: the 
total residuals, denoted by δT , and the within-event residuals δW .

For non-spatial correlation models, the total normalised residuals are typically used, as 
given in Eq. (9), where the total standard deviation σi is decomposed into τi and ϕi compo-
nents according to: σi =

√
τ2

i + ϕ2
i : 

	
δti,k,m =

ln IMi,k,m − µi(Xk,m, θ)√
τ2

i + ϕ2
i

� (9)

In contrast, spatial correlation models generally focus on the spatial pattern of variability 
within the same seismic event. Therefore, they utilise normalised within-event residuals and 
are computed as: 

	
δwi,k,m =

ln IMi,k,m − µi(Xk,m, θ) − δbi,k · τi

ϕi
� (10)

Just to note, spatial correlation models are typically developed by first estimating the 
residuals separately for each earthquake and then combining the results across all events to 
obtain a generalised model. For each individual event, the between-event term (δbi,k · τi) is 
often assumed constant across sites, which is a reasonable approximation for conventional, 
homoscedastic GMMs. As a result, existing inter-IM spatial correlation models generally 
rely on within-event residuals. While this approach works well in most cases, it may not 
fully capture spatial variability when heteroscedastic effects or, as mentioned above, non-
linear site responses are significant. Exploring approaches that incorporate total residuals, 
accounting for both between-event and within-event variability, could be an avenue for 
future research, particularly in the context of cross-IM correlations.
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2.4  Methodologies

The previous section outlined the basis for utilising GMMs and computing residual terms. 
However, with these datasets of residuals for different IMs and event sets etc., several meth-
odologies can be employed to model both spatial and non-spatial correlations, as illustrated 
in Fig. 1.

It is important to note that the majority of existing spatial and non-spatial correlation 
models reviewed in this study, whether developed using analytical formulations, empirical 
fitting, or artificial neural networks (ANNs), are embedded within multi-stage estimation 
frameworks. In such approaches GMM parameters are first estimated, followed by separate 
estimation of correlation structures using the resulting residuals. While widely adopted in 
practice, multi-stage algorithms may suffer from statistical inefficiency and potential incon-
sistency, particularly when correlation parameters interact with the GMM structure. Recent 
studies have shown that one-stage estimation algorithms, which jointly estimate GMM 
and correlation parameters, can provide improved statistical properties, albeit at the cost 
of increased numerical complexity. For completeness, the reader is referred to Ming et al. 
(2019) for a detailed discussion of one-stage estimation frameworks and their implications 
for correlation modelling.

2.4.1  Pearson’s correlation coefficient

Pearson’s correlation coefficient (Ang and Tang 2007) is the most widely used formulation 
for computing correlations. Its basic form is shown in Eq. (11), where X  and Y  represent 
the random variables of interest (e.g., two different IMs), while Xi and Yi are individual 
observations from datasets of size n. The µ terms denote the sample mean. Once the cor-
relation coefficient is determined, analytical formulations are typically used (e.g., Boore 
et al. 2003; Baker and Cornell 2006; Park et al. 2007; Baker and Jayaram 2008; Goda and 
Hong 2008; Goda and Atkinson 2009; Sokolov et al. 2010; Bradley 2011a, 2011b, 2012; 
Cimellaro 2013; Heresi and Miranda 2019), and empirical studies have also been explored 
(e.g., Bradley 2011a; Akkar et al. 2014; Baker and Bradley 2017; Heresi and Miranda 2021; 
Tarbali et al. 2023). More recently, techniques such as artificial neural networks (e.g., Aris-
teidou et al. 2024) have emerged as an alternative. 

	
ρX,Y =

∑n
i=1(Xi − µX)(Yi − µY )√∑n
i=1(Xi − µX)2(Yi − µY )2 � (11)

2.4.2  Semivariograms

As far as spatial correlation is concerned, semivariograms are commonly used in geosta-
tistics. Here, random variables distributed over space and exhibiting spatial continuity are 
represented by a random function Z(x), where x denotes a spatial position. For an univari-
ate random field Z(x), the covariance function between two spatial locations x and x + h 
is defined as: 

	 C(h) = Cov (Z(x), Z(x + h)) = E [(Z(x) − E [Z(x)]) (Z(x + h) − E [Z(x + h)])]� (12)

1 3



Bulletin of Earthquake Engineering

where for a given earthquake Z(x) and Z(x + h) are normalised residuals at sites sepa-
rated by a distance h. Due to sparse spatial coverage, irregular station spacing, and insuffi-
cient sample size to reliably estimate location-dependent means and covariances a common 
assumption in modelling spatial fields is second-order stationarity, which implies a constant 
mean and covariance that depend only on the separation vector h, not on the absolute location 
x and x + h. Furthermore, assuming isotropy means that spatial dependence is a function of 
absolute distance only (i.e., h = ∥h∥) and the mean becomes µZ = E[Z(x)] = E[Z(x + h)], 
simplifying the covariance function to: 

	 C(h) = Cov (Z(x), Z(x + h)) = E [(Z(x) − µZ) (Z(x + h) − µZ)]� (13)

Before adopting assumptions such as second-order stationarity or isotropy, several statisti-
cal tests are available to evaluate whether these properties are supported by the data. Both 
parametric and non-parametric approaches exist for this purpose. For example, Weller and 
Hoeting (2016) provide a comprehensive review of parametric and non-parametric tests 
for detecting anisotropy in spatial datasets. Additionally, tools implemented in the spT-
est package in R (Weller 2018) similarly allow testing isotropy and stationarity through 
semivariogram-based contrasts and resampling procedures. Such diagnostic tests can offer 
preliminary insight into the spatial structure of the data and help guide the selection of an 
appropriate correlation model or identify cases where more flexible, non-stationary formu-
lations may be necessary.

To quantify the dissimilarity between random variables at different locations, the semi-
variogram γ(h) is defined as the expected (E) squared difference between values of the 
random function at locations separated by a distance h (Gooverts 1997). It is particularly 
useful in situations with limited repeated observations at a single location, which is common 
in earthquake ground motion studies. It is written as: 

	

γ(h) = 1
2
E

[
(Z(x) − Z(x + h))2

]

= 1
2
E

[
Z(x)2 − 2 · Z(x) · Z(x + h) + Z(x + h)2]

= 1
2

(
E

[
Z(x)2]

− 2 · E [Z(x) · Z(x + h)] + E
[
Z(x + h)2])

� (14)

From the second-order stationarity assumption, one obtains: 

	

E
[
Z(x)2]

= Var [Z(x)] + µ2 = C(0) + µ2

E
[
Z(x + h)2]

= C(0) + µ2

E [Z(x) · Z(x + h)] = C(h) + µ2

� (15)

and substituting into the expression for γ(h): 
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γ(h) = 1
2

((
C(0) + µ2)

− 2
(
C(h) + µ2)

+
(
C(0) + µ2))

= 1
2

(
2C(0) + 2µ2 − 2C(h) − 2µ2)

= 1
2

· 2 (C(0) − C(h))

= C(0) − C(h)

� (16)

Hence, the covariance function C(h) can be expressed in terms of the semivariogram γ(h) 
as: 

	 C(h) = C(0) − γ(h)� (17)

where Cov(·) denotes covariance, Var(·) denotes variance, and C(0) is the covariance 
at zero distance and represents the variance of the random field. Still under the second-
order stationarity assumption, the correlation coefficient, often referred to as a correlogram 
denoted by ρ(h), describes how correlation decays with increasing separation. It is defined 
as: 

	

ρ(h) = Cov (Z(x), Z(x + h))√
Var [Z(x)] · Var [Z(x + h)]

=C(h)
C(0)

=C(0) − γ(h)
C(0)

=1 − γ(h)
C(0)

� (18)

The correlation depends solely on the distance rather than on specific locations. Conse-
quently, two different pairs of stations distributed in three different locations that are equidis-
tant are assumed to exhibit the same correlation value, regardless of their absolute positions. 
Recent research by Bodenmann et al. (2023) has developed this concept to incorporate 
further details beyond these simplifying assumptions, which will be discussed in Sect. 4.3.

The stationary semivariogram can be empirically estimated from earthquake ground 
motion data using the following functional form: 

	
γ(h) = 1

2N(h)

N(h)∑
α=1

[z(xα + h) − z(xα)]2� (19)

where N(h) is the number of observation pairs separated by the distance ||h|| (often com-
puted using the haversine formula for geographic coordinates) and {z(xα), z(xα + h)} 
denotes the αth pair. A valid semivariogram must be conditionally negative definite. That 
is, for any finite set of locations x1, . . . , xm, and any set of real weights w1, . . . , wm such 
that 

∑m
i=1 wi = 0, the following condition must hold (Cressie 1993): 
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m∑
i=1

m∑
j=1

wiwjγ(xi − xj) ≤ 0� (20)

This condition ensures that the semivariogram leads to a positive semi-definite covariance 
matrix, thereby preserving non-negative variances and conditional variances. To satisfy 
this requirement, semivariogram models are typically constructed as linear combinations 
of basic functions such as exponential, Gaussian, spherical, and nugget effect models, rep-
resented by Eqs. (21), (22), (23), and (24), respectively. 

	
γ(h) = a

[
1 − exp

(
−3h

b

)]
� (21)

	
γ(h) = a

[
1 − exp

(
−3h2

b2

)]
� (22)

	
γ(h) =

{
a

[
3
2

h
b − 1

2
(

h
b

)3
]

, 0 ≤ h ≤ b

a, h > b
� (23)

	
γ(h) =

{
0, if h = 0
a, if h > 0 � (24)

In these models, two key parameters define their shape. The sill, a, is the asymptotic value 
the semivariogram approaches as the distance between data points increases. In practi-
cal terms, it represents the total variance in the system, where the semivariogram value 
becomes constant beyond a certain distance. The range, b, is the distance beyond which the 
semivariogram reaches the sill value. It represents the distance at which the spatial correla-
tion between data points becomes almost negligible.

Figure 2 shows the common exponential model fitting (Eq. (21)) of the semivariogram 
and the visual representation of the sill and range. Semivariograms have been applied to 

Fig. 2  Empirical semivariogram 
and fitted exponential model for 
a univariate random field
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quantifying how the variability of IMs changes with parameters such as distance or even 
soil type (e.g., Wang and Takada 2005; Jayaram and Baker 2009; Esposito and Iervolino 
2011, 2012; Du and Wang 2013; Loth and Baker 2013; Sokolov and Wenzel 2013; Wang 
and Wenqi 2013; Markhvida et al. 2018; Stafford et al. 2019; Abbasnejadfard et al. 2020, 
2021; Wenqi and Ning 2021).

2.4.3  Non-ergodic ground motion models

Conventional GMMs are typically developed under the assumption of ergodicity, which 
treats aleatory variability as spatially independent and estimates it using global datasets. 
While this assumption simplifies model development, it can obscure important spatial 
patterns in ground motion variability. As a result, it may introduce bias in seismic hazard 
assessments, specifically when applied to specific sites or regions.

To overcome this limitation of using the basic GMM functional forms given by Eq. (8), 
the ergodic assumption is relaxed in what are termed non-ergodic GMMs. These models 
form a broader class of approaches that introduce spatially varying source, path and site 
terms directly into the model coefficients. A comprehensive description of this framework 
is provided by Lavrentiadis et al. (2023), and a full treatment is beyond the scope of this 
review. However, a subset of recent non-ergodic modelling studies, such as Huang and 
Galasso (2019), Sgobba et al. (2019), Kuehn and Abrahamson (2020), Liu et al. (2023), 
incorporate spatial correlation within the residual terms, which is directly relevant to the 
focus of this manuscript. For example, Huang and Galasso (2019), for example, inferred 
spatial correlation directly within the GMM and defined a covariance function for within-
event residuals, δWi,k,m, as: 

	 Cov(δWi,k,m) = ϕ2
i · Ωi,k,m(ω)� (25)

where ϕi is the standard deviation of the δWi,k,m, and Ωi,k,m represents the correlation 
matrix for IMi during earthquake k at recording site m, and ω represents the vector of fit-
ting parameters for the non-ergodic GMM. Assuming stationarity and isotropy, Huang and 
Galasso (2019) modelled spatial correlation between two locations xm and xn, separated by 
distance h, corresponding to the upper part of Eq. (28) (δWS), using the following covari-
ance function: 

	
Ωi,k,m(ω) = k(xm, xn) = exp

(
−3h

b

)
= ρ(h, Sa(Ti))� (26)

where h is the distance and b is the fitted parameter.
Further partitioning the between-event, δB, and within-event residuals, δW , helps 

reduce the aleatory variability and better accounts for non-ergodic effects, and several stud-
ies (e.g., Lanzano et al. 2017; Kuehn and Abrahamson 2020; Liu et al. 2023) have shown 
this. Specifically, they decomposed the between-event residuals to isolate systematic source 
variability, δL2L, and the within-event residuals to account for systematic path and site 
effects, denoted as δP 2P  and δS2S, respectively, and are expressed as follows: 

	 δB = δL2L + δB0� (27)
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δW = δWS + δS

= δP 2P + δWS0 + δS2S + δS0
� (28)

where δB0, δWS0, and δS0 represent the remaining aleatory components of the between-
event, within-site, and between-site residuals, respectively. Thus, the GMM functional form 
from Eq. (8) can be rewritten as: 

	 ln IM = µ(M, Rrup, V s30) + δB0 + δL2L + δP 2P + δWS0 + δS2S + δS0� (29)

assuming that δB, δS, and δWS follow Gaussian distributions with zero means and stan-
dard deviations of τ , ϕS , and ϕW S , respectively. A detailed discussion is provided in Sect. 
4.4.

3  Non-spatial correlation modelling

3.1  Analytical formulations

In the early 2000s, several studies emerged focusing on the development of analytical for-
mulations for different ground motion intensity measures. The term analytical formulation 
herein refers to the application of Pearson’s correlation (Sect. 2.4.1) and fitting of a rela-
tively simple parametric functional form. An overview of the key studies examined here 
is illustrated in Fig. 3, where they are distinguished based on the IM they examine and the 
ground motion database they utilise.

One of the first notable studies adopting this approach of utilising Pearson’s correlation 
and a fitted analytical functional form using GMM total residuals was by Baker and Cornell 
(2006) using the pacific earthquake engineering research centers (PEERs) 2000 database for 
Sa(T ) among different period values denoted Ti and Tj  in Fig. 3. Concerning the orienta-
tion definition of Sa(T ), the correlation presented in Baker and Cornell (2006) were based 
on fixed horizontal orientations and did not involve any rotations to utilise geometric mean 
or other definitions previously described in Sect. 2.1. Their analysis computed correlations 
for both horizontal and vertical ground motion components (e.g., x-x, and z-z) as well as 
for different orthogonal orientations (e.g., x-y, and x-z), which are given by Eqs. (30), (31), 
(32), and (33), respectively. 

	
ρxx

Ti,Tj
= 1 − cos

(
π

2
−

(
0.359 + 0.163I(Tmin<0.189) ln Tmin

0.189

)
ln Tmax

Tmin

)
� (30)

	
ρzz

Ti,Tj
= 1 − 0.77 ln Tmax

Tmin
+ 0.315

(
ln Tmax

Tmin

)1.4

� (31)

	

ρxy
Ti,Tj

=
(

0.79 − 0.023 · ln
√

TminTmax

)
·

(
1 − cos

(
π

2
−

(
0.359 + 0.163I(Tmin<0.189) ln Tmin

0.189

)
ln Tmax

Tmin

))� (32)
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ρxz
Ti,Tj

= (0.64 − 0.021 · ln
√

TminTmax·(
1 − cos

(
π

2
−

(
ln Tmax

Tmin

) (
0.29 + 0.094I(Tmin<0.189) ln Tmin

0.189

)))� (33)

where I(Tmin<0.189) equals 1 when Tmin<0.189 and 0 otherwise. Here, Tmax and Tmin rep-
resent the maximum and the minimum of the two periods of interest, Ti and Tj .

Similarly, Baker and Jayaram (2008) computed Pearson’s correlation for total residuals 
of Sa(T ) by accounting for rotation of the horizontal components of the acceleration using 
geometric mean. Baker and Jayaram (2008) utilised the next generation attenuation (NGA)-
W1 ground-motion database (Chiou et al. 2008) to develop a fitting model that evaluates a 
broader range of spectral acceleration periods, described by the equations detailed below: 

Fig. 3  Overview of key studies employing analytical formulations to model non-spatial correlation 
across different IMss. Note: BC06:Baker and Cornell (2006), GH08:Goda and Hong (2008), BJ08:Baker 
and Jayaram (2008), GA09:Goda and Atkinson (2009), C13:Cimellaro (2013), B11a:Bradley (2011a), 
B11b:Bradley (2011b), B12:Bradley (2012)
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C1 = 1 − cos
(

π

2
− 0.366 ln

(
Tmax

max(Tmin, 0.109)

))
,

C2 =
{

1 − 0.105
(
1 − 1

1+e100Tmax−5

) (
Tmax−Tmin

Tmax
− 0.0099

)
if Tmax < 0.2,

0 otherwise.

C3 =
{

C2 if Tmax < 0.2
C1 otherwise

C4 = C1 + 0.5(
√

C3 − C3)
(

1 + cos
(

πTmin

0.109

))

� (34)

	

ρTi,Tj = C2, if Tmax < 0.109
ρTi,Tj

= C1, else if Tmax > 0.109,

ρTi,Tj = min(C2, C3), else if Tmax < 0.2,

ρTi,Tj = C4, else

� (35)

Expanding on this approach, Huang and Galasso (2019) developed a non-ergodic GMM 
for Italy, incorporating empirical correlations for amplitude-type IMs, including PGA and 
Sa(T ) at 29 periods ranging from 0.01 to 4 seconds. The analysis focused on total residu-
als and used empirical data to derive analytical correlation models specific to Italy. A key 
finding was that correlations between Sa(Ti) − Sa(Tj), and Sa(T ) − PGA exhibit no sig-
nificant dependence on magnitude and distance. In contrast, Sa(T ) − PGV  correlations 
were shown to be significantly influenced by the large magnitude and short distances. The 
correlation formulation between Sa(T ) was defined as follows: 

	

ρTi,Tj = C1 = 1 − cos
(

π

2
− 0.2351 ln

(
Tmax

max(Tmin, 0.1)

))
, if Tmax > 0.1

= C2 = 1 − 0.0617
(

1 − 1
1 + e100Tmax−5

)
×

(
Tmax − Tmin

Tmax
− 0.0099

)
, else if Tmax ≥ 0.1

= min(C2, C3), else if Tmax ≥ 0.2

= C3 = C1 + 0.3131
(√

C1 − C1

)
×

[
1 + cos

(
πTmin

0.1

)]
, else

� (36)

For correlations involving Sa(T ) − PGA and Sa(T ) − PGV , the following general 
model was formulated: 

	
ρSa(T ),IMi

= (ϕ1 + ϕ2)
2

− (ϕ1 − ϕ2)
2

tanh
[
ϕ4 ln

(
T

ϕ3

)]
� (37)

where ϕ1, ϕ2, ϕ3 and ϕ4 are model fitting parameters, whose complete description can be 
found in Huang and Galasso (2019)).

Goda and Hong (2008) and Goda and Atkinson (2009) extended the study of non-spatial 
correlations for different Sa(T ) periods Ti and Tj  (i.e., cross-IM correlation). Although 
based on different databases, both works partitioned the total residuals computed by Baker 
and Cornell (2006) into within-event and between-event residuals using Eq. (38), and devel-
oped correlation functions for each type of residual. 
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ρδTi,δTj =

ρδBi,δBj
τiτj + ρδWi,δWj

ϕiϕj

σiσj
� (38)

where ρδTi,δTj , ρδBi,δBj , and ρδWi,δWj  represent the correlations for total, between-event, 
and within-event residuals for IMi and IMj , respectively, and the corresponding standard 
deviations are σ, τ , and ϕ. Those studies utilised 592 ground motions from California earth-
quakes and 8557 ground motions from K-net and KiK-net databases, respectively, to model 
the correlation of total and within-event residuals across spectral acceleration periods, fol-
lowing the same methodology of Baker and Cornell (2006). Due to data limitations, Goda 
and Hong (2008) assumed the between-event residual correlation to follow Eq. (30), as pro-
posed by Baker and Cornell (2006). In contrast, Goda and Atkinson (2009) using K-net, and 
KiK-net databases derived the following correlation function for between-event residuals: 

	

ρδBi,δBj =1
3

(
1 − cos

{
π

2
−

[
1.374 + 5.586ITmin<0.25 ×

(
Tmin

Tmax

)0.728

× log10

(
Tmax

0.25

)]
log10

(
Tmax

Tmin

)})

+ 1
3

{
1 + cos

[
−1.5 log10

(
Tmax

Tmin

)]}
� (39)

Other studies have focused on non-spatial correlation of IMs beyond the spectral accelera-
tion at different periods. Bradley (2011a, 2011b), and Bradley (2012) developed analytical 
formulations to fit empirical correlation coefficients using ground motion data from the 
NGA-W1 Database. These models describe the correlation between Sa(T ) and other IMs, 
including significant duration, Ds575, Ds595, PGA, ASI , SI , and PGV . Bradley (2011a) 
proposed a functional form to represent the correlation coefficient between significant dura-
tion (both Ds575 and Ds595) and Sa(T ) over periods ranging 0.01 - 10s: 

	

ρln Dsxy,ln Sa(T ) = an−1 +
ln

(
T

bn−1

)

ln
(

bn

bn−1

) [an − an−1] bn−1 ≤ T < bn� (40)

where Dsxy  represents the two possible significant durations (Ds575 and Ds595), and an, 
bn are empirical constants defining correlation and specific periods of vibration, respec-
tively, with further details available in Bradley (2011a)). On the other hand, Bradley (2011b) 
and Bradley (2012) developed a different functional form for the correlation between Sa(T ) 
and remaining IMs mentioned before with the functional form: 

	
ρln IMi,ln Sa(T ) = an + bn

2
− an − bn

2
tanh

[
dn ln

(
T

cn

)]
en−1 ≤ T < en� (41)

where IMi represents the considered intensity measure, an, bn, cn and dn are empirical 
constants specific to each correlation model and en represent period ranges for different 
segments. Again, for details see Bradley (2011b) and Bradley (2012).
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3.2  Empirical data

Similar to the works previously described that utilised Pearson’s correlation followed by 
analytical functional forms, further studies, illustrated in Fig. 4, focused on simply provid-
ing the raw empirical correlation coefficients. The empirical correlation was tabulated by 
extracting paired observations across various ground motions and IMs. This was computed 
at discrete points, with the intention being that where direct data were unavailable for cer-
tain intensity measure pairs, linear interpolation is employed to estimate intermediate cor-
relation values.

Studies like Akkar et al. (2014), Baker and Bradley (2017), Tarbali et al. (2023) focused 
on correlating IMs representing various ground motion characteristics, such as amplitude 
(PGA and PGV ), frequency content (Sa(T ), ASI , SI , and DSI), significant duration 
(Ds575, and Ds595), and cumulative effects (CAV , and Ia), on the other hand, Bradley 
(2011a) computed correlations for Sa(T ) residuals alone. Bradley (2011a) used seven 
GMMs and primarily sought to understand the relationship between significant durations 
and several other IMs. It was found that Ds575 and Ds595 tend to be negatively correlated 
with high-frequency amplitude-based IMs, weakly negatively correlated with moderate-fre-
quency amplitude-based IMs, and weakly positively correlated with low-frequency ampli-
tude-based IMs and cumulative absolute velocity. Akkar et al. (2014) developed GMMs to 
estimate horizontal and vertical damping scaling factors, as well as vertical-to-horizontal 
Sa(T ) ratios, using a subset of the pan-European strong-motion RESORCE database. With 
these GMMs, empirical correlations between Sa(T ) residuals for periods ranging 0.01 and 
4 seconds were computed, and are presented in Fig. 5(a).

Baker and Bradley (2017) and Tarbali et al. (2023) investigated IM correlations using a 
NGA-W2 ground motion database. Baker and Bradley (2017) also found that IM correla-
tions are largely independent of magnitude, distance, and other site parameters. An example 
of the Sa(T ) − Sa(T ) correlation developed by Baker and Bradley (2017) is illustrated 
in Fig. 5(b), showcasing how this correlation behaves across different periods. Building 
on previous work and using the same database as Baker and Bradley (2017), Tarbali et al. 
(2023) analysed the correlation of various IMs for ground motions containing near-fault 

Fig. 4  Overview of key studies employing empirical data from Pearson’s correlation to model non-spatial 
correlation. B11:Bradley (2011a), A14:Akkar et al. (2014), TBB23:Tarbali et al. (2023), BB17:Baker and 
Bradley (2017)
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directivity velocity pulses. Their findings indicate that IM correlations for directivity ground 
motions are generally consistent with existing models such as Baker and Bradley (2017) for 
non-pulse-like ground motions. Any observed differences were attributed to variations in 
the ground-motion distribution or sample size (Tarbali et al. 2023).

3.3  Artificial neural networks

While the previous sections have developed models based on either empirical tables of 
coefficients or by fitting analytical functional forms to such data, machine learning meth-
ods have emerged as transformative tools in earthquake engineering and have also been 
implemented in correlation modelling. In this context, it is important to note that the data 
modelled still consists of residuals derived from GMMs, and the fundamental assumptions 
underlying these residuals remain unchanged. What distinguishes the use of ANNs is the 
replacement of traditional analytical fitting functions, which rely on predefined functional 
forms and assumptions to model correlation coefficients, with a data-driven approach capa-
ble of directly representing complex relationships from the data. Aristeidou et al. (2024) 
utilised ANN-based regression models to estimate correlations for several well-established 
and next-generation IMs, including PGA, PGV , PGD, Sa(T ), Ds575, Ds595, Saavg(T ), 
and FIV 3(T ). Their study showed that ANN-derived correlation estimates exhibit lower 
residual errors and better alignment with empirical data.

4  Spatial correlation modelling using the same IMs

4.1  Analytical formulations

Contrary to the formulations presented in Sect. 3, which focus on non-spatial correlation, 
several studies have developed models to describe inter-site correlation for the same IM. 
These models predominantly use exponential decay functions to explain the decreasing cor-
relation with increased distance. Most studies in the literature, particularly those involving 
typical IMs such as PGA, PGV , and Sa(T ) with the same period T , have developed spa-

Fig. 5  Correlation contour of empirical Sa(T ) − Sa(T ) coefficients developed by (a) Akkar et al. 
(2014) and (b) Baker and Bradley (2017)
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tial correlation models using different ground motion databases, depending on the specific 
goals of the study, as illustrated in Fig. 6.

Goda and Hong (2008) investigated spatial correlation relationships for PGA and 
Sa(T ). For the latter IM, they derived equations to fit the correlation coefficients obtained 
using Eq. (38), adapted for total residuals of the same Ti in Sa(T ) as follows: 

	
ρδT (h, Ti) = ρδB(Ti) · [τ(Ti)]2 + ρδW (h, Ti) · [ϕ(Ti)]2

[σ(Ti)]2
� (42)

Since the analysis considers ground motions from the same seismic event across multiple 
site locations, the between-event residuals are fully correlated, meaning ρδB(Ti) = 1 and 
the expression simplifies to: 

Fig. 6  Overview of key studies that employed analytical formulations to model spatial correlation for 
a single IM. B03:Boore et al. (2003), GH08:Goda and Hong (2008), GA09:Goda and Atkinson (2009), 
S10:Sokolov et al. (2010), SW13:Sokolov and Wenzel (2013), HM19:Heresi and Miranda (2019), 
HM21:Heresi and Miranda (2021), AHP22:Aldea et al. (2022)
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ρδT (h, Ti) =

(
τ(Ti)
σ(Ti)

)2

+ ρδW (h, Ti)
(

ϕ(Ti)
σ(Ti)

)2

� (43)

Alternatively, Eq. (44) was also proposed by Goda and Hong (2008) to calculate the spatial 
correlation of total residuals introducing term [σd(h, Ti)]2, firstly proposed by Boore et al. 
(2003), representing the variance of the difference of within-event residuals between two 
locations separated by a distance h, (i.e., δWn,k(Ti) − δWm,k(Ti), where k denotes the 
earthquake event and n and m represent distinct site locations). This term [σd(h, Ti)]2, cap-
tures the spatial correlation structure of within-event residuals and was initially investigated 
by Boore et al. (2003) in the context of PGA residuals. 

	
ρδT (h, Ti) = 1 − [σd(h, Ti)]2

2[σ(Ti)]2
� (44)

Goda and Hong (2008) applied two approaches to model within-event spatial correlation 
of residuals. The first approach involved the direct evaluation of the sample Pearson’s cor-
relation coefficient, as given by Eq. (45). The second approach was based on [σd(h, Ti)]2/2 
and formulated by Eq. (46). Several studies have employed exponential fitting to model the 
decay of spatial correlation with distance, using two fitted parameters, α, and β that depend 
on the IM used, as shown in Eq. (47). For Californian earthquakes, Goda and Hong (2008) 
explored this exponential fitting. Similarly, Sokolov et al. (2010) applied the same format of 
exponential decay model to fit within-event residuals from Taiwanese earthquakes, incorpo-
rating correction factors into the GMM of Morikawa et al. (2008), who demonstrated that 
grouping ground motion data at specific stations could reduce model uncertainty. Likewise, 
Sokolov and Wenzel (2013) investigated the same decay pattern shown in Eq. (47) for Japa-
nese earthquakes, considering different soil type classifications and GMMs in the residual 
calculations. 

	
ρδW (h, Ti) =

COV[δWk,n(Ti), δWk,m(Ti)]
[ϕ(Ti)]2

� (45)

	
ρδW (h, Ti) = 1 − [σd(h, Ti)]2

2[ϕ(Ti)]2
� (46)

	 ρδW (h, Ti) = exp(α(Ti) · hβ(Ti))� (47)

A similar study by Goda and Atkinson (2009) using 7,780 records from 106 earthquakes 
from the K-net and KiK-net databases, extended this approach. In addition to the previous 
methods for calculating ρδW (h, Ti) (Eq. (45) and (46)), a modified fitting method incorpo-
rating a third parameter, γ(Ti), was introduced: 

	 ρδW (h, Ti) = max
[
γ(Ti) · exp[−α(Ti) · hβ(Ti)] − γ(Ti) + 1; 0

]
� (48)

Other studies, such as Heresi and Miranda (2019) and Aldea et al. (2022), used a different 
exponential function to those presented earlier to describe the decay of spatial correlation 
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with distance. This alternative exponential formulation has also two parameters α, and β, 
as: 

	
ρδW (h, Ti) = exp

[
−

(
h

β(Ti)

)α(Ti)
]

� (49)

Both studies developed spatial correlation models using Eq. (49). Heresi and Miranda 
(2019) analysed 39 worldwide seismic events from active shallow crust regions and found 
that the parameter α(Ti) remained relatively constant across different IMs and fixed it at 
0.55. Similarly, Aldea et al. (2022), based on earthquakes from the Chilean subduction zone, 
also fixed α at 0.59 to simplify the spatial correlation model. The β parameter, however, 
was fitted individually for each event. Heresi and Miranda (2019) also performed Monte 
Carlo simulations to incorporate the event-to-event variability of the within-event term in 
the spatial correlation model, rather than considering one correlation model from a single 
event or set of events. As a result, they developed spatial correlation models for PGA and 
Sa(T ) with median, β̂, and standard deviation, σ, represented as: 

	
β̂ =

{
4.231T 2 − 5.180T + 13.392 if T < 1.37s
0.140T 2 − 2.249T + 17.050 if T ≥ 1.37s � (50)

	 σ(T ) = 4.63 × 10−3T 2 + 0.028T + 0.713� (51)

For the Aldea et al. (2022) model, the median β̂ is given by: 

	

β̂ =




14.400 − 17.000T if T ≤ 0.40s
14.743 + 7.795 ln(T ) if 0.40s < T ≤ 0.75s
12.500 if 0.75s < T ≤ 3.00s
5.063 + 6.769 ln(T ) if 3.0s < T ≤ 10.00s

� (52)

For the Heresi and Miranda (2019) model, if no uncertainty is considered, the standard 
deviation is given by Eq. (51). Otherwise β is modelled as a lognormal random variable 
with parameters ln(β̂) and σ(T ). If additional epistemic uncertainty is considered, σ(T ) 
may be scaled by a user-defined uncertainty factor.

Due to the current lack of direct formulations for calculating the spatial correlation for 
Saavg(T ), Heresi and Miranda (2021) investigated an indirect approach based on Sa(T )
-based correlation models and the intrinsic relationship between these two IMs. The results 
was an equivalent correlation model for Saavg(T ) at two distinct locations denoted as sites 
m and n and is given as: 

	
ρlnSaavg (T )m

,lnSaavg (T )n
=

1
N2

N∑
i=1

N∑
j=1

ρlnSa(Ti)m
,lnSa(Tj )

n
· σlnSa(Ti)m

· σlnSa(Tj )
n

σlnSaavg (T )m
· σlnSaavg (T )n

� (53)
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where ρlnSa(Ti)m ,lnSa(Tj )n
 represents the cross-IM spatial correlation coefficient (Sect. 5) 

between two sites m and n at spectral periods Ti and Tj , and N  is the total number of peri-
ods considered in the range c in Eq. (4). The term σlnSa(Ti)m

 corresponds to the standard 
deviation obtained from the GMM used to compute the residuals for Sa(T ) at site m and 
period Ti. Meanwhile, σlnSaavg (T ),m

 denotes the standard deviation of Saavg(T ), which can 
be derived indirectly using standard deviations of Sa(T ) values, following the approach 
(Kohrangi et al. 2017): 

	
σlnSaavg (T ) = 1

N2

N∑
i=1

N∑
j=1

ρlnSa(Ti),lnSa(Tj ) · σlnSa(Ti) · σlnSa(Tj ) � (54)

4.2  Semivariograms

Several studies, as shown in Fig. 7, have employed semivariograms, introduced in Sect. 
2.4.2 to model or quantify spatial correlation using a single IM. In practice, the semivario-
gram models are often applied to data with specific parameter values, such as the sill and 
range.

Fig. 7  Overview of key studies that employed semivariograms to model spatial correlation for a sin-
gle IM. WT05:Wang and Takada (2005), JB09:Jayaram and Baker (2009), EI11:Esposito and Iervolino 
(2011), EI12:Esposito and Iervolino (2012), PS12:Foulser-piggott and Stafford and (2012), DW13:Du 
and Wang (2013), S19:Stafford et al. (2019)
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While semivariograms and analytical formulation both aim to characterise spatial depen-
dence in ground motion residuals, they do so from different statistical perspectives. Analyti-
cal models typically regress Pearson’s correlation coefficients against inter-station distance, 
providing a direct measure of linear correlation. In contrast, semivariograms quantify how 
the variance of the residuals increases with separation distance and infer the underlying 
covariance structure from this relationship. As a result, semivariogram-based approaches 
offer greater flexibility in representing spatial variability, particularly when the variance 
does not adhere to the assumptions implicit in Pearson-based regressions. These meth-
odological differences may lead to variations in the inferred correlation lengths and have 
implications for their practical application in seismic hazard analyses.

One of the early studies to apply semivariogram-based modelling to characterise the 
spatial correlation of total residuals was Wang and Takada (2005). In their analysis of PGV  
residuals from five Japanese earthquakes and the 1999 Chi-Chi earthquake in Taiwan, they 
proposed a macro-spatial correlation model with an exponential decay function of the form: 

	 ρ(h) = exp(−h/b)� (55)

where h is the separation distance and b is a correlation length parameter estimated from the 
data (i.e., range). Two different GMMs were considered for the calculation of PGV  values 
(Annaka et al. (1997) and (Midorikawa and Ohtake 2002)) and consequently, using Eq. (9) 
to calculate PGV  residuals, to be applied in the semivariogram.

The classical semivariogram estimator, originating from geostatistics, is thoroughly 
documented in Cressie (1993). In the context of earthquake engineering, spatial correlation 
modelling of ground motion within-event residuals was introduced by Jayaram and Baker 
(2009). Their study developed a global correlation model that accounts for the clustering 
of Vs30 values, utilising data from seven historical earthquakes. The spatial correlation was 
modelled using an exponential function: 

	 ρ(h) = exp(−3h/b)� (56)

In this formulation, the parameter b is a function of T  and the presence of Vs30 clustering. 
The expressions for b are as follows:

	● No clustering of Vs30 values (for T < 1 second): 

	 b = 8.5 + 17.2T � (57)

	● With clustering of Vs30 values (for T < 1 second): 

	 b = 40.7 + 15.0T � (58)

	● For T > 1 second (regardless of clustering): 

	 b = 22.0 + 3.7T � (59)

1 3



Bulletin of Earthquake Engineering

However, the classical estimator is known to be sensitive to outliers. To address this issue, 
robust alternatives, such as Cressie-Hawkins estimator (Cressie and Hawkins 1980), are 
often preferred to enhance reliability. Several studies have compared classical and robust 
semivariograms in the development of spatial correlation models across different ground 
motion databases.

For instance, Schiappapietra et al. (2022) proposed three spatial correlation models tai-
lored for distinct regions of Italy, namely, northern, central and southern Italy. These models 
underscore the importance of accounting for spatial correlation and associated uncertainties 
in seismic risk analyses. Each model follows the exponential form of Eq. (56), with the 
parameter b expressed as a function of the period T . The models, valid for PGA and Sa(T ) 
up to 2 seconds, are given as:

	● Northern Italy:

	
b(T ) =

{
27.48 − 52.20 · (T − 0.55), for T ≤ 0.55
27.48 + 15.81 · (T − 0.55), for T > 0.55 � (60)

	● Central Italy:

	
b(T ) =

{
17.87 − 8.52 · (T − 1), T ≤ 1
17.87 + 7.85 · (T − 1), T > 1 � (61)

	● Southern Italy:

	 b(T ) = 23.25 − 5.44 · T � (62)

In contrast, Esposito and Iervolino (2011) and Esposito and Iervolino (2012) focused on 
broader applications of robust semivariogram estimators, analysing spatial correlations in 
ground motion residuals across European and Italian ground motion databases for a variety 
of IMs, including PGA, PGV , and Sa(T ).

Using the NGA-W1 database (Chiou et al. 2008), studies such as Jayaram and Baker 
(2009) and Du and Wang (2013) made significant contributions to spatial correlation 
research involving Sa(T ). While both studies focused on spatial correlation, Du and Wang 
(2013) extended the analysis to include correlations based on Vs30 values for CAV  and Ia. 
In this study, a similar global spatial correlation model for Sa(T ) was developed using the 
same formulation for calculating correlation as detailed in Eq. (56). Additionally, Foulser-
Piggott and Stafford and (2012) conducted a focused study on Ia using the same NGA-W1 
database. Stafford et al. (2019), on the other hand, developed a spatial correlation model for 
Sa(T ) using semivariograms applied to a dataset of induced earthquakes from the Gronin-
gen gas field in the Netherlands. While the methodological approach is similar, their study 
differs in the type of seismicity and its regional focus, addressing spatial correlation under 
the specific characteristics of induced seismic events.
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4.3  Methodology accounting for path and site effects

Recent advancements have emphasised non-stationary and anisotropy patterns of spatial 
correlations. For example, Bodenmann et al. (2023) introduced an innovative framework for 
considering these concepts in spatial correlations of ground motion IMs with site-specific 
effects, addressing localised geological variability and improving the practical application 
of spatial correlation models. In their methodology, they followed three assumptions, start-
ing with the assumption that the correlation between sites decreases as the Euclidean dis-
tance between them increases, and for this assumption, they use an exponential function 
described by Eq. (63), which has the same formulation presented, for example, in Eq. (49). 

	 ρE(dE ; ψE) = exp(−(dE/lE)γE )� (63)

where dE  is the Euclidean distance between two sites (see Fig. 8), lE  is the length scale in 
kilometres, γE ∈ (0, 2), and ψE  is a vector that contains all possible combinations for lE  
and γE .

The second assumption is that the correlation between two sites may also depend on 
their position relative to the earthquake rupture, so the epicentral azimuth, θ, was used to 
characterise this relative position and assumed that correlation between sites decreases as 
the difference in their azimuths increases as given by: 

	 ρA(dA; lA) = (1 + dA/lA)(1 − dA/180)180/lA )� (64)

where dA is the angular distance, represented in Fig. 8 and lA is the length scale in degrees 
and can vary between 0◦ and 45◦.

The last assumption is that sites with similar soil conditions may have stronger correla-
tions. As shown by Eq. (65), an exponential form was used for the correlation decay using 
Vs30 values. 

	 ρS(dS ; lS) = exp(−dS/lS)� (65)

Fig. 8  Schematic diagram showing the 
euclidean distance, dE , azimuth distance, 
dA, and site effect, dS , parameters de-
scribed in Bodenmann et al. (2023)
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where dS  is the absolute difference between two sites Vs30 values, illustrated in Fig. 8 and lS  
is the length scale in ms−1 (∈ R+). In the end, to simultaneously account for spatial prox-
imity, path, and site effects they introduced the correlation methodology EAS represented 
by Eq. (66). Their methodology emphasised enhanced accuracy in regional risk assessments 
by considering variations in spatial correlation patterns across multiple IMs and leveraging 
high-resolution site characterisation data. 

	 ρEAS(dE ; dA; dS ; ψEAS) = ρE(dE) · (wρA(dA) + (1 − w)ρS(dS))� (66)

where w is the weight parameter (∈ (0, 1)), and ψEAS  is a vector that collects all possible 
combinations for γE , lE , lA, lS  and w.

Beyond its mathematical formulation, this methodology also carries several practical 
implications. By explicitly incorporating spatial proximity, path geometry, and site-con-
dition similarity, the EAS model can reduce the effective aleatory variability in predicted 
ground motion, particularly in regions where local geologic variability strongly controls 
spatial patterns. The model is calibrated using recorded ground motion in combination with 
high-resolution site-characterisation data, enabling its parameters to reflect regional attenu-
ation behaviour. An advantage of this approach is its ability to represent non-stationary and 
anisotropic correlation structures that traditional isotropic models discussed in Sec.ts 4.1 
and 4.2 cannot capture. However, this flexibility requires more detailed site information and 
a sufficiently dense seismic network for robust calibration, which may limit its applicabil-
ity in data-scarce regions. Although the methodology is relatively recent, it has already 
motivated extensions in related fields; for example, similar principles have been applied 
to spatial correlation in liquefaction hazard modelling (e.g., Pretell et al. 2024), indicating 
growing interest in path- and site-aware spatial models.

4.4  Non-ergodic ground motion models

Traditional studies have modelled spatial correlation as a function of inter-site distance, 
assuming stationarity and isotropy, but emerging research has shown that these assumptions 
may not hold in all cases, particularly in regions with complex geological structures or site-
specific effects (Bodenmann et al. 2023). Recent studies have made significant advances in 
refining spatial correlation models within the context of non-ergodic ground motion models. 
For example, Sgobba et al. (2019), using the non-ergodic GMM developed by Lanzano et 
al. (2017), investigated the spatial correlation of ground motion residuals in Italy, highlight-
ing the impact of regional geology. Huang and Galasso (2019) analysed the implications 
of spatial correlation for infrastructure vulnerability assessments, providing insights into 
site-to-site variability. Kuehn and Abrahamson (2020) proposed methodologies to incor-
porate non-ergodic corrections into GMMs, emphasising the need for improved epistemic 
uncertainty qualification, and Liu et al. (2023) explored regionalised GMMs that account for 
spatially varying source, path, and site effects using records from the Ridgecrest database 
(Rekoske et al. 2020).

Kuehn and Abrahamson (2020) and Liu et al. (2023), additionally, developed spatial cor-
relation models specifically for systematic source, path, and site effects, which can be seen 
in Eq. (29), modelled as functions of geographical coordinates of earthquakes, xk, and sites, 
xs, assuming Gaussian processess (GPs): 
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	 δL2L = f1(xk) ∼ GP (0, k(xk, x′
k))� (67)

	 δP 2P = f2(xk, xs) ∼ GP (0, k([xk, xs], [x′
k, x′

s]))� (68)

	 δS2S = f3(xs) ∼ GP (0, k(xs, x′
s))� (69)

where k(x, x′), k([xk, xs], [x′
k, x′

s]), and k(xs, x′
s) are covariance functions for source, path 

and site effects, respectively. Thus, the main residuals (δB, δWS, and δS) follow a mul-
tivariate Gaussian distribution where the variance is represented by the systematic effects 
explained by covariance functions and the aleatory effects explained by δij  multiplied by the 
aleatory standard deviations as (Liu et al. 2023): 

	 δB ∼ N (0, k(xe, x′
e) + δijτ2

0 )� (70)

	 δWS ∼ N (0, k([xe, xs], [x′
e, x′

s]) + δijϕ2
0,W S)� (71)

	 δS ∼ N (0, k(xs, x′
s) + δijϕ2

0,S2S)� (72)

where δij  takes the value 1 if two earthquakes, paths or sites are identical. For more detailed 
information regarding the covariance functions see, for example, Paciorek and Schervish 
(2006), Kuehn and Abrahamson (2020), Liu et al. (2023).

To model source-effects, Kuehn and Abrahamson (2020) assumed several stationary 
covariance functions, such as exponential, squared exponential, spherical and a special case 
of the Matérn class of covariance functions. Eq. (73) shows the typical isotropic covariance 
function (exponential form) used by Kuehn and Abrahamson (2020): 

	
k(xe, x′

e) = τ2
L2L

(
−||xe − x′

e||
l

)
� (73)

To demonstrate what a stationary covariance function represents for the source-effect spatial 
correlation, an exponential covariance function was used for two events in Fig. 9. Since the 
covariance function only depends on the distance between two events, the shapes of the two 
correlations for the two events are the same.

To account for fault geometry, using an isotropic covariance function may be inappropri-
ate. For instance, in a fictitious scenario like the one shown in Fig. 10(a), a pair of earth-
quake epicentres on the same fault (red pair) should exhibit higher correlation than a pair 
on different faults (blue pair), even if they share the same separation distance. To address 
this, Liu et al. (2023) applied the following equation, originally proposed by Paciorek and 
Schervish (2006), to construct an anisotropic and non-stationary positive definite covari-
ance function: 

	 k(xe, x′
e) = τ2

L2L2D/2|Λ(xe)|0.25|Λ(x′
e)|0.25|Λ(xe) + Λ(x′

e)|−0.5 exp(−
√

Q(xe, x′
e))� (74)

Equation (74) follows the form of a non-stationary squared exponential covariance function. 
However, instead of a spatially constant Kernel matrix, the function incorporated Λ(xe), 
which gives non-stationary and anisotropic behaviour. The premultiplication in Eq. (74) 
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ensures the positive definiteness of the covariance function (Liu et al. 2023). Here, D repre-
sents the dimension of xe, Λ(xe) is a D by D matrix-values function that describes the rela-
tionship between correlation length and the earthquake location x, and Q(xe, x′

e) defines a 
generalised squared distance (i.e., a Mahalanobis-type quadratic form) between points xe 
and x′

e, according to their respective anisotropy matrices (for more details, see Paciorek and 
Schervish (2006)).

To model spatial correlation for path effects, Liu et al. (2023) and Kuehn and Abraha-
mson (2020) employed a similar covariance function as in Eq. (74). However, in this case, 
the quadratic function, Q, is expressed in terms of between-site or between-earthquake dis-
tance, considering paths from the same earthquakes or to the same sites. This formulation 
accounts for path effects, as demonstrated in Fig. 10(b), where two site pairs (a-b and c-d) 
share the same between-site distance. The pair farther from the epicentre (c − d) is expected 
to exhibit higher correlation due to more similar propagation paths (Liu et al. 2023). If path-

Fig. 10  (a) Illustration of spatial stationarity: two pairs of earthquake epicentres (blue and red circles) 
have equal separation distances, but are located on different fictitious faults. The red pair lies along the 
same fault, while the blue pair spans across two distinct faults (black lines), potentially resulting in similar 
correlation despite differing geological contexts and (b) illustration of a stationary covariance function for 
path effects. Two pairs of stations (a–b and c–d) have equal inter-station distances and therefore exhibit 
the same correlation, despite pair a–b being farther from the source region and expected to show higher 
correlation due to more similar propagation paths

 

Fig. 9  Correlation of source effects for two sites using an exponential stationary covariance function
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effects originate from the same earthquake or travel to the same site, the covariance function 
is given by: 

	

k([xs, xe][x′
s, x′

e]) = ϕ2
P 2P 2D/2|Λ(xs, xe)|0.25|Λ(x′

s, x′
e)|0.25·

|Λ(xs, xe) + Λ(x′
s, x′

e)|−0.5 exp
(

−
√

Q([xs, xe][x′
s, x′

e])
)

.
� (75)

Otherwise: 

	 k([xs, xe][x′
s, x′

e]) = 0� (76)

In terms of modelling spatial correlation of site effects, Kuehn and Abrahamson (2020) did 
not account for it; such correlations can be incorporated using nonstationary correlation 
functions (Chen et al. 2021) or through isotropic and stationary covariance functions based 
on between-site distances, as described by Liu et al. (2023): 

	
k(xs, x′

s) = ϕ2
S2S exp

(
−||xs − x′

s||
l

)
� (77)

Using non-ergodic GMMs enables the partitioning of IM residuals, which allows the spatial 
correlation structure of systematic effects to be estimated. Studies such as Kuehn and Abra-
hamson (2020), Liu et al. (2023), among others, developed spatial correlation models based 
on this approach. They proposed isotropic and stationary models for source and site effects, 
as well as anisotropic and non-stationary models that account for fault geometry and path 
effects. Liu et al. (2023) found that anisotropic and non-stationary models more accurately 
captured fault geometries and extrapolated more reliably to data-sparse regions compared 
to isotropic and stationary models, particularly for source and path effects. In contrast, the 
isotropic and stationary model performed well in capturing the spatial distribution of site 
effects. Liu et al. (2023) compared their results with those from Kuehn and Abrahamson 
(2020) and found consistent spatial correlation structures for path effects across different 
regions, suggesting that the models may be transferable.

4.5  Physics-based simulations

Physics-based simulation represent a key development in the availability of ground motion 
signals. In terms of ground motion correlations, a key contribution was made by Chen and 
Baker (2019) who used PBS to investigate intra-event spatial correlation in California. It 
highlighted the importance of considering regional geological conditions and source char-
acteristics in shaping spatial correlation patterns. Importantly, they demonstrated that PBSs 
can replicate key trends observed in empirical models, while also offering the flexibility to 
explore spatially beyond the limitations of observed data. Their findings suggest that non-
stationary and anisotropic spatial correlations depend on source effects, path effects, and the 
relative location to the rupture, for example at small distances, sites located near the same 
portion of the fault rupture tend to exhibit stronger correlation due to shared source effects, 
at moderate to large distances, correlation is more influenced by shared wave propagation 
paths, and sites on opposite sides of a rupture can even display negative correlation, reflect-
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ing complex rupture-relative spatial dependencies. Infantino et al. (2021) applied PBS to 
simulate the 1978 Volvi earthquake in Northern Greece, using the spectral elements in elas-
todynamics with discontinuous Galerkin (SPEED) code (see https://speed.mox.polimi.it/). 
Their study examined the spatial correlation of synthetic ground motion IMs, providing evi-
dence for anisotropic correlation patterns. The results showed a notable difference between 
fault-normal and fault-parallel components, with correlation ranges increasing with period 
and reaching values up to ≈ 64km for long-period motions. These findings challenged the 
conventional assumptions of isotropic and stationary correlation structures often adopted in 
ground motion models and suggested that fault orientation and directivity play an important 
role in spatial correlation characteristics. Expanding on this, Schiappapietra and Smerzini 
(2021) conducted a detailed scenario-based simulation for the 2016 Norcia earthquake in 
Central Italy, again using the SPEED code. They generated over 4,000 synthetic ground 
motion records across an 80km × 80km domain, capturing various fault-relative direc-
tions. Their study systematically evaluated the correlation of ground motion IMs, confirm-
ing the non-stationarity and anisotropy of the correlation structure. They demonstrated that 
spatial correlation varies depending on the relative orientation to the fault, particularly for 
near-source stations. Furthermore, they provided a comparative assessment between simu-
lated and empirical correlation models (e.g., Jayaram and Baker (2009)), identifying sig-
nificant deviations and reinforcing the need for simulation-informed models in complex 
seismo-tectonic regions.

Lin and Smerzini (2022) extended the work by Infantino et al. (2021) for constructing 
an updated 3D numerical model for the Thessaloniki region, incorporating both Thessalon-
iki and Mygdonia basins and adjusting the crustal velocity model. They simulated ground 
motions for earthquake scenarios with magnitudes between 6.5 and 7. They observed a 
maximum correlation range of ≈ 64km for long periods and ≈ 20km for shorter periods. 
Zolfaghari and Forghani (2024) explored spatial correlation variability using a large data-
base of broadband ground motions simulated for Istanbul. Their simulations included 65 
earthquake scenarios and over 7,343 virtual stations, allowing for unprecedented resolu-
tion in examining spatial correlation across varying source, path and site conditions. They 
employed both traditional geo-statistical methods and a non-linear, non-stationary approach, 
calculating correlation coefficients for every station pair. Their results highlighted that spa-
tial correlation is highly sensitive to source rupture complexity, path characteristics, and 
local geology. They also observed that station pairs with similar soil conditions and those 
orientated perpendicular to the rupture tend to exhibit higher correlations, consistent with 
the findings of Monteiro et al. (2026) showcasing the anisotropic and site-dependent nature 
of spatial correlation.

5  Spatial correlation modelling using different IMs

5.1  Analytical formulations

As with same IM spatial correlation, several studies have focused on modelling cross IMs 
spatial correlation through analytical formulations. These formulations typically use decay 
functions to describe how the correlation between IMs varies with distance. These analytical 
approaches are particularly useful, as they provide a simplified and computationally efficient 
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means of estimating spatial dependencies in the available data. Notable studies adopting this 
approach include Goda and Hong (2008) and Goda and Atkinson (2009). As shown in Fig. 
11, the first study investigated the spatial correlation of Sa(T ) responses using earthquake 
records from California and the Chi-Chi in Taiwan. In contrast, employing similar meth-
ods (Goda and Atkinson 2009), focused on data from the K-NET and KiK-net networks in 
Japan. These studies adapted Pearson’s correlation formulation, originally described for the 
same spectral acceleration periods (Eq. (42)), to focus instead on the spatial correlation of 
residuals between different periods. The adapted formulation is shown in Eq. (78). Specifi-
cally, Goda and Hong (2008) and Goda and Atkinson (2009) proposed different analytical 
formulations to describe spatial correlations between Sa(T ) at different periods. The fol-
lowing equations illustrate their methodologies for modelling these inter-period spatial cor-
relations for total and within-event residuals. The total spatial correlation is given by: 

	
ρδT (h, Ti, Tj) =

ρδB(Ti, Tj) · τ(Ti) · τ(Tj) + ρδW (h, Ti, Tj) · ϕ(Ti) · ϕ(Tj)
σ(Ti)σ(Tj) � (78)

where ρδT (h, Ti, Tj), ρδB(Ti, Tj), and ρδW (h, Ti, Tj) represent the spatial correla-
tion of total, between-event, and within-event residuals, respectively. The corresponding 
standard deviations are denoted as σ(Ti) and σ(Tj) for total residuals, τ(Ti) and τ(Tj) 
for between-event residuals, and ϕ(Ti) and ϕ(Tj) for within-event residuals. Goda and 
Hong (2008), proposed an alternative expression for ρδT (h, Ti, Tj) that is based on the 
[σd(h, Ti, Tj)]2, proposed firstly by Boore et al. (2003), which represents the variance of 
[δBk(Ti) + δWk,m(Ti)] − [δBk(Tj) + δWk,n(Tj)] for event k and sites m and n. This 
term was previously described in Sect. (4.1) for Sa(T ) at a single Ti, but it is now extended 
to different periods Ti and Tj . This alternative expression allows for the calculation of the 
spatial correlation of total residuals, not depending on between-event or within-event mod-
els. The quantity [σd(h, Ti, Tj)]2 can be written as: 

	

[σd(h, Ti, Tj)]2 = Var ((δBk(Ti) + δWk,m(Ti)) − (δBk(Tj) + δWk,n(Tj)))
= Var (δBk(Ti) − δBk(Tj) + δWk,m(Ti) − δWk,n(Tj))

� (79)

Fig. 11  Overview of key studies that employed analytical formulations to model spatial correlation for the 
same IMs. GH08:Goda and Hong (2008), GA09:Goda and Atkinson (2009)
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where h represents the distance between sites m and n. Because δB and δW  are considered 
independent, Eq. (79) can be expanded as: 

	

[σd(h, Ti, Tj)]2 = Var (δBk(Ti) − δBk(Tj)) + Var (δWk,m(Ti) − δWk,n(Tj))
= τ2(Ti) + τ2(Tj) − 2 · ρδB(Ti, Tj) · τ(Ti) · τ(Tj)

+ ϕ2(Ti) + ϕ2(Tj) − 2 · ρδW (h, Ti, Tj) · ϕ(Ti) · ϕ(Tj)
= σ2(Ti) + σ2(Tj) − 2 · ρδT (h, Ti, Tj)σ(Ti) · σ(Tj)

� (80)

Therefore, ρδT (h, Ti, Tj) can be rewritten as: 

	
ρδT (h, Ti, Tj) =

σ2(Ti) + σ2(Tj) − [σd(h, Ti, Tj)]2

2 · σ(Ti) · σ(Tj)
� (81)

For between-event correlation, Goda and Atkinson (2009) used the formula presented by 
Eq. (39) and Goda and Hong (2008), and as mentioned before in Sect. (3.1), due to the lack 
of data, it was approximated as: 

	 ρδB(Ti, Tj) = ρδT (0, Ti, Tj) = ρδW (0, Ti, Tj)� (82)

which was represented as ρxy
Ti,Tj

 suggested by Baker and Cornell (2006) in Eq. (32).

For different periods Ti and Tj , both studies mentioned before, modelled within-event 
spatial correlation using the Markov-type screening hypothesis (Journel 1999): 

	 ρδW (h, Ti, Tj) ≈ ρxy
Ti,Tj

· ρδW (h, Tmax)� (83)

where Tmax represents the maximum period between Ti and Tj , ρxy
Ti,Tj

 denotes any non-
spatial correlation model for Sa(T ) (see Sect. 3) and ρδW (h, Tmax) can be calculated using 
any spatial correlation model for the same spatial correlation period, Tmax (see Sect. 4).

With Eq. (82) describing the correlation of between-event residuals and Eq. (83) describ-
ing the spatial correlation of within-event residuals, Goda and Hong (2008) and Goda and 
Atkinson (2009) reformulated Eq. (81), which represents the spatial correlation of total 
residuals as follows: 

	
ρδT (h, Ti, Tj) =

ρxy
Ti,Tj

· [τ(Ti) · τ(Tj) + ρδW (h, Tmax) · ϕ(Ti) · ϕ(Tj)]
σ(Ti) · σ(Tj)

� (84)

5.2  Cross-semivariograms

When analysing spatial correlation across multiple ground motion parameters, such as spec-
tral accelerations at different periods or various IMs (e.g., PGA, PGV , etc.), a multivariate 
approach is required. The multivariate random field extends the univariate case by repre-
senting the random function as a vector, with each component corresponding to a different 
variable at a given spatial location. In the univariate case, spatial dependence is captured 
using the semivariogram (see Eq. (14)). In the multivariate setting, the spatial dependence 
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is of interest not only within each variable but also between different variables at the same 
location. This is measured using the cross-semivariogram. For instance, let ZIMi (x) and 
ZIMj (x) denote the residuals of the random functions corresponding to two different inten-
sity measures, IMi and IMj . The cross-semivariogram between these two components is 
defined as: 

	
γIMi,IMj (h) = 1

2
E[(ZIMi (x) − ZIMi (x + h))(ZIMj (x) − ZIMj (x + h))]� (85)

This function captures both spatial variability and the relationship between these two differ-
ent variables. The empirical cross-semivariogram is then calculated, similar to Eq. (19), as: 

	
γIMi,IMj (h) = 1

2Ni,j(h)

Ni,j(h)∑
α=1

[(zIMi (xα) − zIMi (xα + h))(zIMj (xα) − zIMj (xα + h))]� (86)

where Ni,j(h) is the number of observation pairs for the two variables at a separation 
distance h and {zIMi (xα), zIMi (xα + h)} represent the αth data pair for the bin for ith 
component of the vector IM. Compared to the univariate approach (see Eq. (13)), here the 
covariance function CIMi,IMj (h) is calculated as: 

	

CIMi,IMj (h) =Cov
(
ZIMi (x), ZIMj (x + h)

)

=E
[
(ZIMi (x) − E[ZIMi (x)])(ZIMj (x + h) − E[ZIMj (x)])

]� (87)

where under the stationary assumption, the mean of ZIM (x) is equal the mean of 
ZIM (x + h). Similar to the relationship mentioned before in Eq. (17), for isotropic and 
stationary fields, it can be written (Gooverts 1997): 

	 CIMi,IMj (h) = CIMi,IMj (0) − γIMi,IMj (h)� (88)

So the spatial correlation, similar to Eq. (18), but now between two different intensity mea-
sures, IMi and IMj , can be calculated as (Wang and Wenqi 2013): 

	

ρIMi,IMj (h) =
CIMi,IMj (h)√

CIMi,IMi
(0) × CIMj ,IMj

(0)

=
CIMi,IMj (0)√

CIMi,IMi (0) × CIMj ,IMj (0)
−

γIMi,IMj (h)√
CIMi,IMi (0) × CIMj ,IMj (0)

� (89)

The cross-semivariogram matrix, Γ(h), Eq. (90), aggregates the semivariograms and cross-
semivariograms for all pairs of IMs into a single matrix representation. The covariance 
matrix C(h), Eq. (91), for the multivariate random field can be derived using the semi-
variogram matrix, ensuring it remains positive definite, and the correlation matrix R(h), 
Eq. (92), has the direct correlation coefficients on its main diagonal (when i = j), and the 
off-diagonal elements (when i ̸= j) represent the cross-correlation coefficients. Note 
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that i, j ∈ {1, 2, . . . , N − 1, N} represents the different IMs analysed and γIMi,IMi (h), 
CIMi,IMi (h), and ρIMi,IMj (h) can be obtained using Eqs. (86), (88), and (89), respectively. 

	

Γ(h) = [γIMi,IMj (h)] =




γIM1,IM1 (h) γIM1,IM2 (h) · · · γIM1,IMN
(h)

γIM2,IM2 (h) · · · γIM2,IMN
(h)

sym
. . .

...
γIMN ,IMN

(h)


� (90)

	

C(h) = [CIMi,IMj (h)] =




CIM1,IM1 (h) CIM1,IM2 (h) · · · CIM1,IMN
(h)

CIM2,IM2 (h) · · · CIM2,IMN
(h)

sym
. . .

...
CIMN ,IMN

(h)


� (91)

	

R(h) = [ρIMi,IMj (h)] =




ρIM1,IM1 (h) ρIM1,IM2 (h) · · · ρIM1,IMN
(h)

ρIM2,IM2 (h) · · · ρIM2,IMN
(h)

sym
. . .

...
ρIMN ,IMN

(h)


� (92)

Given that normalised within-event residuals can be reasonably modelled as following a 
multivariate normal distribution, their spatial variability for a specific earthquake event 
k is entirely described by their mean and covariance structure. In this context, the mean 
is assumed to be a vector of zeros, while the covariance matrix, Σ, captures the spatial 
dependencies among the M  observation sites. For event k, the full covariance matrix Σ 
is constructed by assembling the N × N  sub-matrices C(h) (as defined in Eq. (91)) cor-
responding to all inter-site distances: 

	

Σ(event k) =




C(h11) C(h12) · · · C(h1M )
C(h21) C(h22) · · · C(h2M )

...
...

. . .
...

C(hM1) · · · · · · C(hMM )


� (93)

Maintaining a positive definite covariance matrix is essential for valid spatial modelling, 
as it ensures the physical plausibility of simulated random fields. Fig. 12 illustrates several 
studies (e.g., Loth and Baker 2013; Wang and Wenqi 2013; Markhvida et al. 2018; Abbasne-
jadfard et al. 2020; Wenqi and Ning 2021; Monteiro et al. 2026) that have employed dif-
ferent fitting techniques to fit the cross-semivariogram models and guarantee the positive 
definiteness of the covariance matrix.

5.2.1  Linear model of co-regionalisation

From Fig. 12, it can be seen that Loth and Baker (2013) and Wang and Wenqi (2013) 
employed a methodology known as the linear model of co-regionalisation (LMC) (Gou-
lard and Voltz 1992). This approach accounts for the effect of multiple spatial scales and 
assumes that all variables are linear combinations of shared underlying spatial structures 
(Loth and Baker 2013). The general idea of LMC is to model multivariate spatial variation 
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by expressing each spatial variable as a linear combination of a common set of orthogonal, 
second-order stationary random fields. Formally, this starts with a set of n second-order sta-
tionary and mutually orthogonal latent random fields {Yr(x), r = 1, . . . , n}, each with its 
own direct covariance function Cr(h), where h is the spatial lag (see Eq. (17)). Orthogonal-
ity implies that the cross-covariances between distinct fields are zero: 

	 Crr′ (h) = 0 for r ̸= r′� (94)

Let Zi(x), with i = 1, . . . , N , denote the observed spatial random field associated with the 
ith IM. Each Zi(x) is modelled as a linear combination of the shared latent fields: 

	
Zi(x) =

n∑
r=1

ai,rYr(x)� (95)

where ai,r are scalar coefficients representing the contribution of each latent field Yr(x) 
to the observed field Zi(x). As a result of this construction, the observed fields, Zi(x), are 
generally correlated, with their cross-covariances given by: 

	
Ci,j(h) =

n∑
r=1

ai,raj,rCr(h)� (96)

This equation shows that the covariance between any two observed variables is a weighted 
sum of the covariances of the shared latent fields. This enables shared spatial structures to be 
embedded across multiple observed variables, facilitating multivariate modelling.

Fig. 12  Overview of key studies that employed cross-semivariograms to model spatial correlation for 
different IMs. LB13:Loth and Baker (2013), WD13:Du and Wang (2013), ABF20:Abbasnejadfard et al. 
(2020), MCB18:Markhvida et al. (2018), DN21:Wenqi and Ning (2021), MAO26:Monteiro et al. (2026), 
LMC (linear model of co-regionalisation), LD (latent dimensions), PCA (principal component analysis)
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To incorporate multiple spatial scales, the standard LMC formulation is extended by 
associating each latent field with a specific scale l. This leads to a multi-scale version of the 
LMC, where each observed variable {Zi(x)} is modelled as a linear combination of latent 
fields Y l

r (x), each indexed by its scale l and component r (Loth and Baker 2013): 

	
Zi(x) =

L∑
l=0

nl∑
r=1

al
i,rY l

r (x), ∀i = 1, . . . , N � (97)

where each Y l
r (x) is a latent random field at spatial scale l and component r, al

i,r is the coef-
ficient connecting the latent process to the observed variable Zi, nl is the number of latent 
components at scale l, and L is the total number of scales. Each latent field is assumed to be 
second-order stationary with zero mean and covariance that satisfies: 

	

E[Y l
r (x)] = 0,

Cov(Y l
r (x), Y l′

r′ (x + h)) =
{

γl(h), if r = r′and l = l′

0, otherwise
� (98)

This ensures that latent fields are uncorrelated across both component and spatial scales. 
Analogous to Eq. (96), the multi-scale formulation leads to a decomposition of the semivar-
iogram matrix Γ(h), capturing all semivariograms and cross-semivariograms between the 
observed variables: 

	
Γ(h) =

L∑
l=0

Blγl(h)� (99)

where each γl(h) is an admissible semivariogram function corresponding to the spatial 
structure l, and can be modelled using parametric forms such as exponential, Gaussian, 
spherical, or nugget models (see Eqs. (21)-(24)). Each term Bl is a positive definite co-
regionalisation matrix, constructed from the coefficients al

i,r, quantifying how much each 
structure contributes to the cross-variability of the observed variables. In the case of two 
IMs, the Bl matrix becomes: 

	
Bl =

[ ∑nl

r=1(al
1,r)2 ∑nl

r=1 al
1,ral

2,r∑nl

r=1 al
2,ral

1,r

∑nl

r=1(al
2,r)2

]
� (100)

Thus, the multi-scale LMC provides a flexible framework for modelling multivariate spatial 
data through a shared set of basic structures, each representing a spatial process operating at 
a specific scale (Journel and Huijbregts 1979). Loth and Baker (2013) and Wang and Wenqi 
(2013), used two exponential functions as γl(h), with two different ranges b1 and b2 as basic 
models, therefore the cross-semivariogram matrix from Eq. (99) was described as: 

	
Γ(h) = B1

[
1 − exp

(
−3h

b1

)]
+ B2

[
1 − exp

(
−3h

b2

)]
� (101)

and then the covariance matrix becomes: 
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C(h) =
[

lim
h→∞

Γ(h)
]

− Γ(h)

= B1 exp
(

−3h

b1

)
+ B2 exp

(
−3h

b2

)� (102)

The total covariance matrix, Σ, in Eq. (93) is guaranteed to be positive semi-definite regard-
less of the number of sites considered, if the co-regionalisation matrices Bl are all positive 
semi-definite (Gooverts 1997).

Loth and Baker (2013) implemented the LMC to simulate cross-spatial correlation in 
spectral acceleration, Sa(T ), at nine different periods, ranging from 0.01 to 10 seconds, 
considering three co-regionalisation matrices, B1, B2, and B3, obtained using Goulard and 
Voltz (1992) algorithm, accounting for three components: a short-range structure (20 km) 
and long-range structure (70 km) and the nugget effect, respectively. The model can be 
expressed as: 

	
R(h) = B1 exp

(
−3h

20

)
+ B2 exp

(
−3h

70

)
+ B3ζh=0� (103)

where ζh=0 is 1 when h = 0, and 0 otherwise.
Another study to apply the LMC methodology was Wang and Wenqi (2013) to several 

IMs, such as PGA, PGV , Ia, and Sa(T ). Their model for Sa(T ) differs significantly from 
the previous model because it uses data from eleven past earthquakes and not seven, incor-
porates the impact of site conditions and does not use the same correlation ranges of 0 km, 
20 km, and 70 km for the nugget effect, short and long-range, respectively. Instead, it uses a 
short range of 10 km and omits the nugget effect. Additionally, this study employs the GMM 
by Campbell and Bozorgnia (2008), in contrast to the one by Boore and Atkinson (2008) 
used by Loth and Baker (2013). The spatial correlation model was developed for the same 
nine periods as in the previous study and is given by: 

	
R(h) = P 1 exp

(
−3h

10

)
+ P 2 exp

(
−3h

70

)
� (104)

For a regionally dependent model, incorporating site conditions, the equation becomes: 

	

R(h, RVs30 ) =P 01
SA exp

(
−3h

10

)
+ P 02

SA exp
(

−3h

70

)

+KSA

(
RVs30

10

) [
exp

(
−3h

70

)
− exp

(
−3h

10

)]� (105)

Here, P 1 and P 2 are co-regionalisation matrices derived from standardising the matrix 
Bl, while P 01

SA, P 02
SA, and KSA are co-regionalisation matrices that account for regional 

site conditions, representing short-range, long-range, and the influence rate of regional site 
conditions, respectively.
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5.2.2  Principal component analysis

The LMC method made it possible to build accurate multivariate semivariogram matrices 
for IMs, enabling the simultaneous calculation of correlation coefficients for Sa(T ) across 
various periods and locations, as well as the fitting of cross-covariances. However, the chal-
lenge of maintaining positive definiteness in matrices as the number of IMs and the number 
of n locations increase becomes computationally demanding. Addressing this limitation, 
Markhvida et al. (2018) proposed a framework using principal component analysis (PCA) 
(Jackson 1991) with geostatistical methods (i.e., semivariograms), providing an efficient 
solution for co-simulating spatially correlated spectral accelerations across multiple peri-
ods in regional seismic analyses. The variables of interest (i.e., the IM residuals computed 
in Sect. 2.3) are essentially linearly transformed to an orthogonal basis via PCA, which 
produces principal components-uncorrelated projections onto the new basis. Each of these 
principal components can be thought of as capturing the main modes of spatial variation in 
the data, which are much easier to analyse compared to the original multi-dimensional data.

With respect to orthogonality with the preceding component, the variance of the first 
principal component is the largest, followed by the second principal component, which has 
the second largest variance, and so on. Eqs. (106), and (107) define that linear transforma-
tion, where P  is the orthogonal linear transformation matrix with the principal component 
coefficients (i.e., eigenvectors of the covariance matrix), Z is the matrix with the original 
data (i.e., normalised residuals from several IMs (ZIMi , i = 1, . . . , N) and from several 
locations (x1 to xM )), and Y  is the final matrix with the transformed uncorrelated variables 
(i.e., residuals in the principal component space). 

	 PZ = Y � (106)

	




p1,IM1 · · · p1,IMN

...
. . .

...
pN,IM1 · · · pN,IMN







ZIM1 (x1) · · · ZIM1 (xM )
...

. . .
...

ZIMN
(x1) · · · ZIMN

(xM )


 =




y1(x1) · · · y1(xM )
...

. . .
...

yN (x1) · · · yN (xM )


�(107)

On the other hand, knowing that P  is an orthogonal matrix, Z can be derived from Y  in the 
following way: 

	 Z = P −1Y = P T Y � (108)

Because principal components are uncorrelated, the simple Eq. (19) can be used to calcu-
late the semivariogram for each component independently, avoiding the need for cross-
semivariograms. Markhvida et al. (2018) proposed a simplified model in which only five 
principal components were used, since they were sufficient to explain at least 95% of the 
total variance. In this study, Eq. (109) was presented as the best representation of empirical 
semivariograms using PCA, capturing three types of behaviours: 

	
γk(h) = c0k(Inuggect) + c1k

(
1 − exp

(
−3h

a1k

))
+ c2k

(
1 − exp

(
−3h

a2k

))
� (109)
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where the first term denotes the nugget effect, where Inuggect = 0 if h = 0 and Inuggect = 0 
otherwise. The other two terms represent the short-range and the long-range effects, respec-
tively, using two exponential functions; k represents the kth principal component; and 
c0k, c1k, c2k, a1k, and a2k are regression coefficients. Based on Eqs. (109), and (106), the 
cross-semivariogram previously described by Eq. (85) can be expressed as (Markhvida et 
al. 2018): 

	
γIMi,IMj (h) = CIMi,IMj (0) − CIMi,IMj =

N∑
k=1

pk,IMi pk,IMj γk(h)� (110)

Several factors in the PCA-based analysis can influence the resulting spatial correlations. 
Wenqi and Ning (2021) investigated this by varying the number of earthquakes, the number 
of ground motions, the set of IMs considered, and the number of principal components 
retained. Their results show that the spatial correlation of spectral acceleration at different 
periods, as well as CAV , decreases with increasing period. A similar decreasing trend was 
observed for PGA and Ia. In contrast, significant duration (Ds575 and Ds595) exhibited 
very low and generally negative spatial correlation with most IMs. Furthermore, recognis-
ing the gap in models for next-generation IMs, Monteiro et al. (2026) have also developed 
a cross-spatial model using PCA.

5.2.3  Latent dimension method

Although previous studies have examined the multivariate correlation of within-event resid-
uals in earthquake IMs, they have all assumed isotropy in these residuals - an assumption 
that does not always hold (Garakaninezhad et al. 2017). To address this limitation, Abbasne-
jadfard et al. (2020) presented a new method that considers anisotropy in spatial correlation 
of multivariate random fields using the latent dimension latent dimensions (LD) method 
initially proposed by Genton and Kleiber (2015). This methodology shows how important it 
is to address anisotropic and non-stationary correlations since conventional isotropic mod-
els tend to unrealistic loss estimations and inaccurate resilience assessment (Abbasnejadfard 
et al. 2021). LD is an efficient approach to construct valid non-separable cross-covariance 
functions and can be applied to anisotropic multivariate random fields. The key idea is to 
consider k latent dimensions to represent an n-dimensional multivariate random field as a 
univariate random field in a space n + k dimensions Genton and Kleiber (2015).

6  Critical discussion

Three main categories of ground motion correlation modelling were examined in this 
review, encompassing non-spatial, spatial (same-IM), and spatial (cross-IM) correlations. 
Comparative analyses were conducted to highlight methodological differences, underlying 
assumptions, and their implications. The following subsections reflect on these with some 
critical discussion on some of the benefits, drawbacks and current limitations. A recurring 
limitation across published correlation models concerns the treatment of uncertainty in the 
estimated correlation range parameters. Substantial variability in reported range values is 
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evident across datasets, regions, and modelling approaches, as illustrated by the comparison 
plots (Figs. 13–14). This variability may be interpreted as reflecting aleatory uncertainty 
associated with the spatial variability of ground motion residuals, yet most studies rely on 
single point estimates without explicitly characterising this uncertainty, although studies 
like Heresi and Miranda (2019) have addressed it. In contrast, differences among published 
models are more appropriately viewed as epistemic uncertainty arising from data selection, 
modelling assumptions, and estimation strategies. While point estimates are often adequate 
for immediate engineering applications, neglecting these distinct sources of uncertainty 
may lead to overconfident inference when propagated into hazard and risk analyses. Incor-
porating uncertainty quantification strategies, such as event-wise bootstrap resampling or 
unified likelihood-based estimation approaches (Ming et al. 2019), represents an important 
direction for future developments and would enhance the robustness and transparency of 
ground motion correlation modelling.

6.1  Non-spatial correlation modelling

Section (3) reviewed different correlation models developed in the last two decades and 
Fig. 13 provides an illustrative comparison. Fig. 13(a) compares the correlation between 
Sa(T ) and significant duration (Ds575 and Ds595) for three models. Although based on 

Fig. 13  Non-spatial correlation and cross-correlation model comparison between (a) Sa(T ) − Ds575 
and Sa(T ) − Ds595, (b) Sa(T ) − P GA and Sa(T ) − P GV , (c) Sa(T ) − Sa(T ) using analytical 
formulations and (d) Sa(T ) − Sa(T ) using various methodologies
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distinct methodologies, all yield broadly consistent trends, with negative correlations at 
short periods and increasing positive correlations at longer periods. Aristeidou et al. (2024) 
was observed to be more negatively correlated than the other two available models Bradley 
(2011a), Baker and Bradley (2017), which was attributed to differences in filtering criteria, 
with these latter studies including earthquakes of much lower magnitude than the Aristeidou 
et al. (2024) study. Figure 13(b) compares correlations between Sa(T ) and PGA or PGV . 
Despite differences in regional datasets (e.g., NGA-W1, NGA-W2 and European/Middle 
Eastern), the models show consistent decay of ρSa,P GA with period and stable ρSa(T ),P GV  
around 0.3 s-1.0s. Given its cross-regional consistency and more recent calibration, the 
(Baker and Bradley 2017) formulation remains the most broadly applicable. Figures 13(c) 
and 13(d) show intra-period correlation of spectral acceleration at two periods Ti and Tj .

Although all analytical formulations capture the general decay of correlation with 
increasing separation of periods, they differ in their mathematical structure and treatment of 
horizontal components. Baker and Cornell (2006) explicitly separate horizontal and vertical 
components and use trigonometric-logarithmic forms, which can produce sharper changes 
in correlation for small differences in periods, reflecting a more abrupt decay (Eq. (30)-
(33)). In contrast, Baker and Jayaram (2008) (Eq. (34) and (35)) and Huang and Galasso 
(2019) (Eq. (36)) adopt piecewise or smoothed logarithmic forms, which ensure continu-
ity and smoother variation across periods, particularly when geometric-mean rotations are 

Fig. 14  Spatial correlation models comparison for (a) Sa(0.3), (b) Sa(1.5), (c) P GA, and (d) P GV
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used. Mathematically, these differences influence the stability and realism of multivariate 
spectral acceleration simulations. Ultimately, the choice between these formulations repre-
sents two mathematically valid options, each with trade-offs between fidelity to component-
specific residuals and smoothness across periods.

The overall behaviour is similar across all studies, although Baker and Bradley (2017) 
systematically predicts lower correlations for widely separated periods. Subsequent investi-
gations Aristeidou et al. (2024) attributed this to a broader magnitude range in the calibration 
dataset, implying that such differences stem more from database filtering than fundamental 
modelling discrepancies (e.g., GMM used). Thus, for applications requiring internally con-
sistent correlations, models constrained to a narrower magnitude range typically utilised in 
strong shaking, such as Aristeidou et al. (2024), or regionally-specific models such as Akkar 
et al. (2014), may be more suitable.

6.2  Intra-IM spatial correlation modelling

Intra-IM spatial correlation modelling was addressed in Section (4). Over the past two 
decades, spatial correlation modelling has evolved from analytical and geostatistical for-
mulations toward non-ergodic GMMs, physics-based simulations and Bayesian inference 
models that better capture spatial variability.

A brief note on the assumptions underlying the earlier analytical and geostatistical 
approaches is helpful for interpreting the models compared below. Analytical formulations 
typically rely on simplified structures, often implicitly assuming linear dependence, homo-
geneity, and stationarity of the underlying spatial field, which make them efficient and easy 
to apply but limit their ability to represent more complex or scale-dependent behaviour. 
Geostatistical tools such as semivariograms offer greater flexibility; however, they depend 
on well-distributed data and on the suitability of the adopted variogram model, irregular 
sampling, outliers, and non-stationarity trends can all bias the inferred correlation struc-
tures. These considerations are particularly relevant when contrasting newer models with 
analytical or empirical formulations, as differences in underlying assumptions can translate 
into noticeably different spatial decay patterns.

Figure 15 compares several representative models for Sa(T ), PGA, and PGV . For 
Sa(T ) (Figs. 15(a)-(b)), some models show a noticeably slower decay with distance, main-
taining higher correlations (0.20–0.35 at 20 km for Sa(0.3s)) compared to older formula-
tions that approach zero. These results imply a broader spatial footprint of ground motion 
correlation, which may be more realistic in regions with dense seismic instrumentation for 
crustal earthquakes. However, they also risk overestimating spatial coherence if applied in 
regions with stronger path variability. For PGA (Fig. 15(c)), the diversity among models 
is more pronounced. Some approaches retain moderate correlation beyond 40 km, whereas 
others predict a much faster decay. This variability mainly reflects the large differences 
among existing PGA spatial correlation models, which results in lower confidence when 
predicting the behaviour of this IM, as well as differences in data filtering and the definition 
of inter-site distance, underscoring the sensitivity of PGA-based models and the need for 
regional calibration rather than unquestioned adoption. Finally, the PGV  comparison (Fig. 
15(d)) reveals that models derived from different databases (e.g., Japanese and European 
earthquakes) yield completely different correlation coefficients, highlighting the sensitivity 
of PGV -based models and the importance of wisely selecting for the region under study. 
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This comparison between the different spatial correlation models highlights how method-
ological choices and input databases can significantly influence spatial correlation predic-
tions for various IMs between themselves. Given the variations observed in Fig. 15, careful 
consideration must be given not only to the IM to adopt, but also to the selection of an 
appropriate spatial correlation model, particularly in the context of seismic risk assessments.

Section 4.4 discussed the possibility of adopting non-ergodic GMMs for representing 
spatial correlation. While there are clear advantages to giving further consideration to spe-
cific issues like path and site effects, non-ergodic GMMs are not without challenges. One 
of the main limitations is their dependence on large, spatially dense datasets to reliably 
constrain regionalised terms and spatial correlation structures, which may not be available. 
However, the high-resolution datasets becoming increasingly available from PBS (Sect. 
4.5) could potentially remedy this current obstacle. The increased complexity of non-ergo-
dic GMMs, particularly when modelling anisotropic and non-stationary behaviours, can 
also make parameter estimation more difficult and computationally demanding. Moreover, 
incorporating these models into PSHA frameworks remains non-trivial and is typically 
more resource-intensive than using conventional ergodic models, compounded by the lack 
of widely-used software platforms to implement them. As a result, their practical application 
are currently limited.

Fig. 15  Cross-spatial correlation comparison for Sa(T ). (a) Comparison between Sa(0.1) − Sa(0.5); 
(b) comparison between Sa(0.5) − Sa(1.0); (c) comparison between Sa(1.0) − Sa(1.5); (d) com-
parison between Sa(1.5) − Sa(3.0)
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Similarly, in the case of PBS, Sect. 4.5 reviewed five different studies that each conveyed 
the potential of PBS in characterising spatial correlations, which could also, in turn, be use-
ful for non-ergodic GMMs described above. Nevertheless, several challenges remain, such 
as the high computational demand often required. In addition, the reliability of simulation 
outputs is closely tied to the quality of input data, such as rupture models, subsurface veloc-
ity structures, and site conditions, which are not always well defined. A further limitation 
is that the underlying models and numerical assumptions can lead to spatial coherence that 
is stronger and smoother than typically observed in recorded earthquakes, for example, 
due to simplified velocity structures, limited resolution, or uniform shallow-site representa-
tions. Another limitation lies in the validation of simulated spatial correlation patterns, as 
dense arrays of ground motion records are often scarce, particularly for large events. Thus, 
while PBS offers a robust framework for exploring complex spatial patterns, the resulting 
correlation models are currently more suitable for assessing and validating the simulations 
themselves, rather than for direct use in seismic risk assessments, and should be combined 
with observational data when possible.

6.3  Inter-IM spatial correlation modelling

Section (5) addressed inter-IM spatial correlation modelling, which is probably the least 
explored topic in correlation modelling, but in practical applications, probably the most 
needed.

Understanding the assumptions that underpin existing inter-IM correlation models helps 
contextualise the comparison presented below. Early Pearson- and Markov-type formulations 
assume linear dependence, stationarity, and a homogeneous distance-decay structure, which 
makes them straightforward to apply but limits their ability to represent period-dependent 
or nonlinear interactions between IMs. More flexible approaches, such as cross-semivario-
grams fitted through the LMC, assume that all inter-IM relationships can be represented as 
linear combinations of shared basic variogram structures; this requires the spatial field to be 
jointly second-order stationary on how cross-dependence can vary with scale. PCA-based 
models rely on decomposing inter-IM covariance into orthogonal modes, meaning that the 
main directions of variability are assumed to be global and spatially invariant, which can be 
sensitive to the number of retained components and to the conditioning of the underlying 
covariance matrix. Latent-dimension formulations embed IMs in a lower-dimension space 
defined by hidden variables, which provides greater flexibility but introduces identifiability 
challenges and depends on the choice of regularisation and dimensionality. These differing 
assumptions across modelling frameworks naturally lead to variations in predicted cross-
correlation levels, particularly at short distances and across spectral periods.

Among the models reviewed, it was seen that there are significant variations in how spa-
tial and period-dependent correlations are captured, as shown in Fig. 14. All models predict 
a monotonic decrease in correlation with distance, but the decay rate and near-field behav-
iour (within 50 km) depend strongly on the empirical dataset, regional tectonics, and model-
ling framework. Models with faster decay may underestimate spatial coherence, leading to 
an underestimation of correlated losses in regions with closely spaced assets. Conversely, 
models predicting higher short-distance correlations can overestimate spatial dependence, 
inflating risk estimates if applied outside their calibration range. This near-field sensitiv-
ity is particularly important for portfolio-based loss assessments. Additionally, more recent 
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spatial correlation models developed using PCA (Markhvida et al. 2018; Wenqi and Ning 
2021; Monteiro et al. 2026) tend to have higher correlation coefficients, in contrast to the 
Markov-type models (Goda and Hong 2008; Goda and Atkinson 2009) initially developed.

The spatial co-variation of different IMs reflects underlying physical processes that 
simultaneously influence multiple IMs. Rupture characteristics such as fault geometry, slip 
heterogeneity, and directivity generate coherent patterns across a range of frequencies, so 
IMs of different periods often exhibit correlated variations along preferred directions. Path 
effects, including attenuation, scattering, and regional crustal structure, impose systematic 
spatial modifications that affect multiple IMs, though with period-dependent sensitivities. 
Local site conditions, such as basin-effects, impedance contrasts, and soil nonlinearity, fur-
ther reinforce short-distance cross-IM correlations. These factors highlight that, beyond 
inter-station distance, azimuth orientation, regional geology and shared source-path-site 
effects can strongly influence cross-IM coherence and should be considered when develop-
ing or selecting correlation models.

In summary, higher or lower spatial correlation coefficients do not necessarily imply 
better physical representation but may instead reflect artefacts of underlying GMM fitting, 
variability, filtering criteria, and other aspects. While there is general agreement on the qual-
itative nature of spatial correlation decay, significant discrepancies exist among the specific 
models. Analysts must pay attention to these, possibly referring to Fig. 12, when selecting 
the most suitable model. Additionally, there remain opportunities to move beyond the cur-
rent predominant reliance on site-to-site distance as the only predictor of inter-site cor-
relation. Several studies have suggested incorporating additional explanatory parameters, 
such as site condition contrasts, shared source effects, and regional path characteristics, 
into correlation models, which could enhance their realism and predictive capacity (e.g., 
Bodenmann et al. 2023). Likewise, integrating site, path and source effects in a more con-
sistent and scalable manner within global models represents a promising direction for future 
research.

7  Summary

This paper has reviewed over 45 distinct models available in the literature for characteris-
ing the correlation between different ground motion intensity measure (IM) types. These 
encompass both intra-site (non-spatial) and inter-site (spatial) domains, in addition to same 
IM and cross IM models. The approaches fit Pearson correlation coefficients to observed 
data using available ground motion databases and characterise the correlation models via 
analytical functions or other geostatistical techniques, such as semivariograms, depend-
ing on the quantity. Fitting methods included the linear model of coregionalisation, and 
dimensionality reduction approaches like principal component analysis. Other strategies to 
quantify ground motion correlations both spatially and non-spatially include physics-based 
simulations and non-ergodic ground motion models. This wide array of modelling tech-
niques, along with the different ground motion datasets used for calibration and validation, 
highlights the plethora of options available to analysts when performing seismic hazard and 
risk assessments.

The review provided here aimed to give an overview of the state-of-the-art, provide a 
critical comparison between models and serve as a valuable resource for future research-

1 3



Bulletin of Earthquake Engineering

ers and practitioners aiming to select appropriate models for both spatial and non-spatial 
correlation of IMs. It emphasised the importance of aligning model selection with regional 
characteristics, the nature of the IMs under consideration, the available ground motion data-
base, and the specific engineering or risk assessment applications. Furthermore, an online 
repository of these models has been created and shared on GitHub, where analysts can 
browse and evaluate them, also contributing to their expansion with future implementations.

Special emphasis was made to scrutinise correlation models available for so-called next 
generation IMs, whether they were direct models, indirect calculations, or yet to be estab-
lished. This was because improvements have been made in seismic vulnerability modelling 
with increasing emphasis on more sophisticated IMs, such as FIV 3 and Saavg(T ), that 
better characterise structural response of the built environment, helping the development 
of more accurate vulnerability and fragility models. However, correlation modelling on the 
seismic hazard side has not kept pace with this evolution. In particular, it was found that 
there is a general lack of well-established models to quantify spatial and cross-spatial cor-
relation involving these newer IMs. Recent work by Monteiro et al. (2026) has begun to 
address this, presenting a cross-spatial model for several next-generation IMs and interac-
tions with traditional ones. This gap is particularly relevant in the context of regional risk 
assessment (e.g., Heresi and Miranda 2023), where different IMs may be used for different 
structure types or asset classes across a distributed portfolio. By addressing these gaps, the 
correlation modelling of IMs can develop into more accurate, flexible, and operationally 
useful models for both non-spatial and spatial correlation of ground motions, enabling more 
accurate regional seismic assessments.
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