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Abstract

Inter and intra-site correlation of ground-motion intensity measures (IMs) plays a critical
role in seismic hazard and risk assessment. Ignoring such correlations can lead to signifi-
cant misrepresentation of losses in regional-scale studies and misrepresentation of ground
motion field simulations. Accurate correlation modelling is essential for scenario-based
risk assessments, emergency preparedness planning, and understanding systematic infra-
structure vulnerabilities in portfolio risk analyses. This study presents a detailed overview
of intra-site (non-spatial) and inter-site (spatial) correlation models developed over the past
two decades. It reviews over 45 models proposed in the literature, encompassing diverse
methodologies applied to different regional databases and a variety of IM. The analyses
reveal considerable variability among models, particularly in short-range spatial correla-
tion and in how inter-IM correlations are treated. Despite this diversity, most models rely
on simplifying assumptions such as stationarity and isotropy, which may not fully capture
the complexities of real-world ground motion patterns. This work provides a valuable
resource for researchers and practitioners by summarising the current state of correlation
modelling and offering guidance on model selection based on database, regional context,
and engineering application. It underscores the importance of informed model choice for
improving the accuracy of hazard and risk assessments in spatially distributed systems.

Keywords Seismic risk - Correlation - Spatial correlation - Regional assessment -
Intensity measures

1 Introduction

In seismic risk assessment studies, the correlation of ground shaking plays a significant role,
particularly in understanding how different intensity measures (IMs) relate to one another
both at the same site location and spatially across several locations. These models have
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several applications in seismic risk analyses. In ground motion selection procedures, such
as the conditional spectrum (CS) method (Lin et al. 2013; Baker and Lee 2018) and the gen-
eralised conditional intensity measure (GCIM) method (Bradley 2010), correlations are key
parameters for matching the statistical characteristics of target distributions. Additionally,
spatial correlation models are critical for generating spatially coherent ground motion fields,
which are essential for simulating earthquake shaking over broad geographic areas (e.g.,
Bradley 2014; Weatherill et al. 2014, 2015) and for performing loss estimation for spatially
distributed assets (e.g., Park et al. 2007).

The study of correlations can be broadly classified into two categories: inter-site correla-
tion (herein termed spatial correlation), which examines dependencies between the shaking
intensity at different site locations; and intra-site correlation (herein termed non-spatial cor-
relation), which focuses on relationships in ground shaking at a single site location. These
spatial and non-spatial correlation models can be further distinguished according to the IMs
they address, with models mapping a single IM referred to as same IM models herein, and
cross IM models refer to when different IMs are mapped. Table 1 categorises these and lists
the numbers of studies reviewed here based on whether they address intra- or inter-site cor-
relations, as well as whether same or cross IMs.

This review provides a summary of existing research in correlation modelling using a
wide range of methodologies and databases over the past two decades. Over 40 different
studies were reviewed and are critically discussed herein. A detailed description of the data-
base, methodology, IMs, and correlation types is summarised in a table hosted on GitHub
and referenced in Sect. 7. The overall goal is to provide a background and relative compari-
son of the various models developed, their scope and possible limitations for seismic risk
analysts looking to implement them in different contexts.

2 Background and structure

Before diving into the different studies that are reviewed in the following sections, several
background aspects common to most studies are first presented. These relate to the IMs
adopted, the ground motion databases utilised, the methods to model and compute correla-
tion, and the techniques applied to fit and produce usable models for seismic engineering
applications.

A general overview is illustrated in Fig. 1. The first distinguishing aspect is between
spatial and non-spatial correlation, followed by whether the same or different IMs were
investigated. Consequently, the main body is divided into three main sections, beginning
with non-spatial correlation with different IMs in Sect. 3. This is followed by Sect. 4 that
introduces spatial correlation modelling for the same IMs, followed by Sect. 5 that examines
spatial correlation for different IMs. The redundant case of non-spatial correlation for the
same IM is not discussed.

Table 1 Number of intra- and Same IM Cross IMs
inter-site models for same and -

Intra-site - 13
cross IMs .

Inter-site 25 8
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Fig.1 Overview of correlation modelling for seismic shaking

2.1 Intensity measures

The choice of IM when conducting probabilistic seismic hazard analysis (PSHA) or seismic
fragility and vulnerability modelling is a pertinent aspect that depends on several crite-
ria. These often relate to the specific nature of the structural systems analysed, the analy-
sis approach used, and the broader goals of the study. The purpose of this article is not
to explore these motivations in detail, but rather to note that a variety of IMs exist, each
serving different purposes. These can be broadly categorised as peak amplitude or cumula-
tive IMs. Examples of peak amplitude IMs include peak ground acceleration, PG A, peak
ground velocity, PGV, peak ground displacement, PG D, spectral acceleration at differ-
ent periods, Sa(T), for example. Examples of cumulative IMs include Arias intensity, Ia,
significant duration, Dss75 and Dssgs, cumulative absolute velocity, C AV, acceleration
spectrum intensity, ASI, spectrum intensity, SI, and displacement spectrum intensity,
DS1. Another group of so-called next-generation IMs have been the focus of much research
in recent years, offering several advantages when characterising risk in different settings.
Examples include average spectral acceleration, Saqyg(7"), and filtered incremental veloc-
ity, FIV3(T"), which will be discussed further below.

The Husid plot (Husid 1969) represents the cumulative a normalised by the total Ia
and is defined as:

1

H(t) = —

t

/ [a(7))? dr x 100% (1)
0

where a(t) is the ground acceleration, and I« is given by:

fa= /0 la(t)]2dt @)
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The significant duration Ds,,, is then defined as the interval between instants ¢, and ¢, at
which the Husid plot reaches 2% and y% of Ia, respectively:

Dsgy =1, — 1, 3)

Average spectral acceleration, Saq.g(T'), is computed as the geometric mean of IV spectral
acceleration values within a range of periods:

L
N

N
Sty (T) = (H Sa(ciT)>

“)
L X
In Saguy(T) = N Zln Sa(¢;T)

i=1

where Sa(c;T) corresponds to the 5%-damped spectral acceleration value, N =10 typically,
¢; is a factor ranging uniformly from 0.2 to 2.0 and 0.2 to 3.0 for what were termed (Shahn-
azaryan and O’Reilly 2024) Saqug2(T") and Saqwg3(T), respectively.

The filtered incremental velocity metric, F'1V3(T"), proposed by Davalos and Miranda
(2019), has shown promising results regarding the efficiency and sufficiency in character-
ising the collapse performance of buildings. It captures the cumulative effect of ground
motion pulses by integrating a filtered acceleration signal over a sliding time window. This
IM can be briefly explained as:

FIV3(T) = mam{‘/s,mazl + ‘/s,maZZ + ‘/s,maZB; H/S,minl + Vvs,minQ + Vvsman'} (5)
t+aT
Vs(t) = / Ugf (t)dt, Yt <tepa—aT (6)
t

where V;(t) represents a sequence of incremental velocity (IV) values computed over mov-
ing time windows of length of a7". From this series, the three largest and three smallest
local extremes, Vs maz1, Vs,maz2s Vs,maz3 and Vs mint, Vs min2, Vs,min3, respectively, are
extracted. The variable T' corresponds to the period of interest, implying it is a period-
dependent IM, while t.nd denotes the final time step of the acceleration time history. The
acceleration signal 4y is obtained by applying a second-order Butterworth low-pass filter
to the original motion, using a cut-off frequency f. = Sf, where f = 1/T and /3 is a scal-
ing factor.

When evaluating correlations between spectral acceleration, Sa(T), an important con-
sideration is the orientation of horizontal ground motion components. A common practice is
to take the geometric mean of the two orthogonal station recordings, Sa9™ (1"). However,
this is sensitive to the initial orientation in which the components were recorded. Boore
(2010) introduced rotated measures such as Saf*°*P%0(T) and Saf***P00(T). The Rot D50
definition represents the median (50th percentile) across all non-redundant orientations
of the horizontal ground motion, effectively capturing a typical directional response. In
contrast, the Rot D100 definition corresponds to the maximum Sa(T") observed across all
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orientations, representing a conservative, envelope-type estimate. Where relevant, the ori-
entation of these IMs will be specified herein.

2.2 Ground motion databases

Another aspect is the database of ground motions utilised. These can range from the classi-
cal approach of using natural ground motions, albeit with some filtering and correction tech-
niques applied, recorded from notable past earthquakes, or using simulated ground motion
recordings obtained from physics-based simulations (PBS).

Several correlation models have been developed using different ground motion data-
bases. Knowing which databases were considered can help engineers and researchers apply
a model to a specific region. A table summarising the databases used for the correlation
models reviewed in this study, along with additional relevant detail, is available on GitHub
(see Sect. 7).

In recent years, the increasing availability of computational resources has significantly
enhanced the capability of PBS to simulate earthquake ground shaking with a high degree
of physical realism. These simulations, grounded in the numerical solution of the elastody-
namic equations, offer a valuable alternative to recorded ground motion data, particularly
in regions with sparse instrumentation or complex geology (e.g., Chen and Baker 2019;
Infantino et al. 2021; Schiappapietra and Smerzini 2021; Lin and Smerzini 2022; Zolfaghari
and Forghani 2024). A more detailed discussion is provided in Sect. 4.

Lastly, it is important to note that all correlation models discussed in this work pertain to
mainshock events, where the issue of aftershocks has not been included in the review, but
several studies have examined these (e.g., Zhu et al. 2017; Papadopoulos et al. 2019; Ming-
Yang and Da-Gang 2024).

2.3 Ground motion models and residuals

Correlation modelling, both spatial and non-spatial, relies on the use of appropriate ground
140 motion models (GMMs). GMMs are essential to provide estimates of ground shak-
ing intensity as a function of earthquake rupture characteristics, path effects, and local site
conditions. They typically follow a lognormal distribution as a function of explanatory vari-
ables and a residual term, generally written as:

In IM; g = 1i(Xem, 0) + 0ti ko.m - 04 @)

where, In IM; ., is the natural logarithm of it" IM for event k and recording site m,
i ( Xk m, 0) is the mean value from the GMM based on explanatory variables X}, ,,, (e.g.,
moment magnitude, M,,, Joyner-Boore distance, R;;, site conditions, V3g, etc.), and
model parameters, 6. 0¢; 1., and o; are the normalised total residual and the total standard
deviation in logarithmic space, respectively. To better separate sources of variability, mod-
ern GMMs often use mixed-effects regression models (Abrahamson and Youngs 1992),
which decompose the total variability into between- and within-event components using
0tikm - 03 = 0b; ;- T; + dW; k.m - ¢4, NOting that the m subscript is dropped from 7 since
it is invariant for all site locations between events. The form of such a model is written:
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lnIMi,kJn = Mi(Xk,mae) JF(SBi,k +5Wi’k7m g

:ui(kam,H)Jréb,;_,k-Ti+5wi,k7m-¢i ®)
where 6b; ;; and dw; 1, correspond to the normalised between-event and within-event
residuals. 7; and ¢; are the between-event and within-event logarithmic standard devia-
tions, respectively.

Although this representation aligns with standard mixed-effects formulations, it is worth
noting that the separation of the residual components becomes more nuanced when the
GMM includes non-linear site-response terms. In such cases, the between-event variabil-
ity interacts with the non-linear site amplification rather than passing through the model
unchanged (e.g., Chiou and Youngs 2008, 2014; Atik and Abrahamson 2010). This interac-
tion means that the within-event and between-event terms are not strictly additive, which
in turn can influence how correlations should be interpreted or applied. From a practical
perspective, users applying existing spatial correlation or non-spatial correlation models
to GMMs with non-linear site terms should be aware that most correlation models were
derived assuming linear site behaviour. As a result, some deviation in the effective within-
event variability is expected, and performing basic sensitivity checks may be advisable
when non-linear site effects are significant.

Correlation models are typically developed based on within-event residuals, comparing
the observed ground GMM’s prediction, rather than the absolute IM value recorded. Specifi-
cally, the correlation models analysed in this study are based on two types of residuals: the
total residuals, denoted by 07, and the within-event residuals §1V.

For non-spatial correlation models, the total normalised residuals are typically used, as
given in Eq. (9), where the total standard deviation o; is decomposed into 7; and ¢; compo-

nents according to: o; = \/W :
I IM; jm — i (X, m, 0)

VA v

In contrast, spatial correlation models generally focus on the spatial pattern of variability
within the same seismic event. Therefore, they utilise normalised within-event residuals and
are computed as:

6ti,k,’m =

lnIMLk’m - ‘lti(Xhm,Q) - 5bi,k R
b

6wi,k,m =

(10)

Just to note, spatial correlation models are typically developed by first estimating the
residuals separately for each earthquake and then combining the results across all events to
obtain a generalised model. For each individual event, the between-event term (6b; 1, - 7;) is
often assumed constant across sites, which is a reasonable approximation for conventional,
homoscedastic GMMs. As a result, existing inter-IM spatial correlation models generally
rely on within-event residuals. While this approach works well in most cases, it may not
fully capture spatial variability when heteroscedastic effects or, as mentioned above, non-
linear site responses are significant. Exploring approaches that incorporate total residuals,
accounting for both between-event and within-event variability, could be an avenue for
future research, particularly in the context of cross-IM correlations.
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2.4 Methodologies

The previous section outlined the basis for utilising GMMSs and computing residual terms.
However, with these datasets of residuals for different IMs and event sets etc., several meth-
odologies can be employed to model both spatial and non-spatial correlations, as illustrated
in Fig. 1.

It is important to note that the majority of existing spatial and non-spatial correlation
models reviewed in this study, whether developed using analytical formulations, empirical
fitting, or artificial neural networks (ANNs), are embedded within multi-stage estimation
frameworks. In such approaches GMM parameters are first estimated, followed by separate
estimation of correlation structures using the resulting residuals. While widely adopted in
practice, multi-stage algorithms may suffer from statistical inefficiency and potential incon-
sistency, particularly when correlation parameters interact with the GMM structure. Recent
studies have shown that one-stage estimation algorithms, which jointly estimate GMM
and correlation parameters, can provide improved statistical properties, albeit at the cost
of increased numerical complexity. For completeness, the reader is referred to Ming et al.
(2019) for a detailed discussion of one-stage estimation frameworks and their implications
for correlation modelling.

2.4.1 Pearson’s correlation coefficient

Pearson’s correlation coefficient (Ang and Tang 2007) is the most widely used formulation
for computing correlations. Its basic form is shown in Eq. (11), where X and Y represent
the random variables of interest (e.g., two different IMs), while X; and Y; are individual
observations from datasets of size n. The p terms denote the sample mean. Once the cor-
relation coefficient is determined, analytical formulations are typically used (e.g., Boore
et al. 2003; Baker and Cornell 2006; Park et al. 2007; Baker and Jayaram 2008; Goda and
Hong 2008; Goda and Atkinson 2009; Sokolov et al. 2010; Bradley 2011a, 2011b, 2012;
Cimellaro 2013; Heresi and Miranda 2019), and empirical studies have also been explored
(e.g., Bradley 2011a; Akkar et al. 2014; Baker and Bradley 2017; Heresi and Miranda 2021;
Tarbali et al. 2023). More recently, techniques such as artificial neural networks (e.g., Aris-
teidou et al. 2024) have emerged as an alternative.

XY = Z?:l(XifﬂX)(Y%*My)
" VY (X — pux)2(Y; — py )2

(11)

2.4.2 Semivariograms

As far as spatial correlation is concerned, semivariograms are commonly used in geosta-
tistics. Here, random variables distributed over space and exhibiting spatial continuity are
represented by a random function Z(x), where x denotes a spatial position. For an univari-
ate random field Z(x), the covariance function between two spatial locations x and x + h
is defined as:

C(h) =Cov (Z(x),Z(x+ h)) =E[(Z(z) —E[Z)]) (Z(x+ h) —E[Z(z+ h)])] (12)
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where for a given earthquake Z(x) and Z(x + h) are normalised residuals at sites sepa-
rated by a distance h. Due to sparse spatial coverage, irregular station spacing, and insuffi-
cient sample size to reliably estimate location-dependent means and covariances a common
assumption in modelling spatial fields is second-order stationarity, which implies a constant
mean and covariance that depend only on the separation vector h, not on the absolute location
x and x + h. Furthermore, assuming isotropy means that spatial dependence is a function of
absolute distance only (i.e., h = ||h||) and the mean becomes pz = E[Z(x)] = E[Z(x + h)],
simplifying the covariance function to:

C(h) = Cov (Z(x), Z(z + h)) = E[(Z(2) — pz) (Z(x + h) — pz)] (13)

Before adopting assumptions such as second-order stationarity or isotropy, several statisti-
cal tests are available to evaluate whether these properties are supported by the data. Both
parametric and non-parametric approaches exist for this purpose. For example, Weller and
Hoeting (2016) provide a comprehensive review of parametric and non-parametric tests
for detecting anisotropy in spatial datasets. Additionally, tools implemented in the spT-
est package in R (Weller 2018) similarly allow testing isotropy and stationarity through
semivariogram-based contrasts and resampling procedures. Such diagnostic tests can offer
preliminary insight into the spatial structure of the data and help guide the selection of an
appropriate correlation model or identify cases where more flexible, non-stationary formu-
lations may be necessary.

To quantify the dissimilarity between random variables at different locations, the semi-
variogram (h) is defined as the expected (E) squared difference between values of the
random function at locations separated by a distance h (Gooverts 1997). It is particularly
useful in situations with limited repeated observations at a single location, which is common
in earthquake ground motion studies. It is written as:

1(0) = SE[(2(@) ~ 2(z + )]
= % [Z(x)? =2 Z(x) - Z(x + h) + Z(z + h)?] (14)
— L (E[2()?] - 2 E(Z(@) - Z(x + 1] + E[Z(x + 7))

From the second-order stationarity assumption, one obtains:

E[Z(x)*] = Var[Z ()]+u = C(0) + 2
E [Z(x+ h) ] C(0) + (15)
E[Z(z) - Z(ac+h)]:0(h)+ 1

and substituting into the expression for y(h):
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1) = 3 ((C0) +12) =2 (C(h) + 1) + (C(0) + 1))
- % (2C(0) + 2p* — 2C(h) — 244°) 16)
= 3 -2(C(0) - C(h)
= C(0) — C(h)

as:

C(h) = C(0) = ~(h) (17)

where Cov(-) denotes covariance, Var(-) denotes variance, and C(0) is the covariance
at zero distance and represents the variance of the random field. Still under the second-
order stationarity assumption, the correlation coefficient, often referred to as a correlogram
denoted by p(h), describes how correlation decays with increasing separation. It is defined
as:

_ Cov (Z(x), Z(xz+ h))
V/Var [Z(z)] - Var [Z(z + h)]

p(h)

(18)

The correlation depends solely on the distance rather than on specific locations. Conse-
quently, two different pairs of stations distributed in three different locations that are equidis-
tant are assumed to exhibit the same correlation value, regardless of their absolute positions.
Recent research by Bodenmann et al. (2023) has developed this concept to incorporate
further details beyond these simplifying assumptions, which will be discussed in Sect. 4.3.

The stationary semivariogram can be empirically estimated from earthquake ground
motion data using the following functional form:

N(h)
() = gy 2 el ) = (o) (19)

where N (h) is the number of observation pairs separated by the distance ||h|| (often com-
puted using the haversine formula for geographic coordinates) and {z(z), (x4 + h)}
denotes the o’ pair. A valid semivariogram must be conditionally negative definite. That
is, for any finite set of locations x4, ..., Z,,, and any set of real weights wy, ..., w,, such
that ZZI w; = 0, the following condition must hold (Cressie 1993):

@ Springer



Bulletin of Earthquake Engineering

m m

ZZwiwj'y(aci —-z;) <0

i=1 j=1

(20)

This condition ensures that the semivariogram leads to a positive semi-definite covariance
matrix, thereby preserving non-negative variances and conditional variances. To satisfy
this requirement, semivariogram models are typically constructed as linear combinations
of basic functions such as exponential, Gaussian, spherical, and nugget effect models, rep-
resented by Egs. (21), (22), (23), and (24), respectively.

~(h) = a {1 ~exp (?)] @1
e () o
(b = a[%%*%(%)g]a 0<h<b 23)
a, h>b
-2 13

In these models, two key parameters define their shape. The sill, a, is the asymptotic value
the semivariogram approaches as the distance between data points increases. In practi-
cal terms, it represents the total variance in the system, where the semivariogram value
becomes constant beyond a certain distance. The range, b, is the distance beyond which the
semivariogram reaches the sill value. It represents the distance at which the spatial correla-
tion between data points becomes almost negligible.

Figure 2 shows the common exponential model fitting (Eq. (21)) of the semivariogram
and the visual representation of the sill and range. Semivariograms have been applied to

Fig. 2 Empirical semivariogram
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quantifying how the variability of IMs changes with parameters such as distance or even
soil type (e.g., Wang and Takada 2005; Jayaram and Baker 2009; Esposito and Iervolino
2011, 2012; Du and Wang 2013; Loth and Baker 2013; Sokolov and Wenzel 2013; Wang
and Wengqi 2013; Markhvida et al. 2018; Stafford et al. 2019; Abbasnejadfard et al. 2020,
2021; Wengqi and Ning 2021).

2.4.3 Non-ergodic ground motion models

Conventional GMMs are typically developed under the assumption of ergodicity, which
treats aleatory variability as spatially independent and estimates it using global datasets.
While this assumption simplifies model development, it can obscure important spatial
patterns in ground motion variability. As a result, it may introduce bias in seismic hazard
assessments, specifically when applied to specific sites or regions.

To overcome this limitation of using the basic GMM functional forms given by Eq. (8),
the ergodic assumption is relaxed in what are termed non-ergodic GMMs. These models
form a broader class of approaches that introduce spatially varying source, path and site
terms directly into the model coefficients. A comprehensive description of this framework
is provided by Lavrentiadis et al. (2023), and a full treatment is beyond the scope of this
review. However, a subset of recent non-ergodic modelling studies, such as Huang and
Galasso (2019), Sgobba et al. (2019), Kuehn and Abrahamson (2020), Liu et al. (2023),
incorporate spatial correlation within the residual terms, which is directly relevant to the
focus of this manuscript. For example, Huang and Galasso (2019), for example, inferred
spatial correlation directly within the GMM and defined a covariance function for within-
event residuals, 6W; i, as:

Cov(Wi k) = 67 - Qi g (w) (25)

where ¢; is the standard deviation of the 0W; i ,,, and Q; ., represents the correlation
matrix for I M; during earthquake % at recording site m, and w represents the vector of fit-
ting parameters for the non-ergodic GMM. Assuming stationarity and isotropy, Huang and
Galasso (2019) modelled spatial correlation between two locations x,,, and z,,, separated by
distance h, corresponding to the upper part of Eq. (28) (6TV.S), using the following covari-
ance function:

tonl) = ) = s (= ) = ol Sa(T) e

where h is the distance and b is the fitted parameter.

Further partitioning the between-event, 0B, and within-event residuals, 61/, helps
reduce the aleatory variability and better accounts for non-ergodic effects, and several stud-
ies (e.g., Lanzano et al. 2017; Kuehn and Abrahamson 2020; Liu et al. 2023) have shown
this. Specifically, they decomposed the between-event residuals to isolate systematic source
variability, L2L, and the within-event residuals to account for systematic path and site
effects, denoted as § P2P and §525, respectively, and are expressed as follows:

6B = §L2L + 0By @7)
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W =0WS+48

— 5P2P + WS, + 6528 + 65, (28)

where 6 By, dW Sy, and §.S represent the remaining aleatory components of the between-
event, within-site, and between-site residuals, respectively. Thus, the GMM functional form
from Eq. (8) can be rewritten as:

InIM = p(M, Ryup, V$30) + 6Bo + 6L2L + 6P2P + WSy + 6525 +6So  (29)

assuming that 6 B, §.5, and W S follow Gaussian distributions with zero means and stan-
dard deviations of 7, ¢g, and ¢y g, respectively. A detailed discussion is provided in Sect.
4.4,

3 Non-spatial correlation modelling
3.1 Analytical formulations

In the early 2000s, several studies emerged focusing on the development of analytical for-
mulations for different ground motion intensity measures. The term analytical formulation
herein refers to the application of Pearson’s correlation (Sect. 2.4.1) and fitting of a rela-
tively simple parametric functional form. An overview of the key studies examined here
is illustrated in Fig. 3, where they are distinguished based on the IM they examine and the
ground motion database they utilise.

One of the first notable studies adopting this approach of utilising Pearson’s correlation
and a fitted analytical functional form using GMM total residuals was by Baker and Cornell
(2006) using the pacific earthquake engineering research centers (PEERs) 2000 database for
Sa(T) among different period values denoted T; and 7 in Fig. 3. Concerning the orienta-
tion definition of Sa(T"), the correlation presented in Baker and Cornell (2006) were based
on fixed horizontal orientations and did not involve any rotations to utilise geometric mean
or other definitions previously described in Sect. 2.1. Their analysis computed correlations
for both horizontal and vertical ground motion components (e.g., x-x, and 2-z) as well as
for different orthogonal orientations (e.g., x-y, and x-z), which are given by Egs. (30), (31),
(32), and (33), respectively.

P g, =1 cos <2 - (0.359 +0.1631(7,,.., o 159) I 03%2)) In T:“:) (30)

min min

1.4
Tmar Tmam
PZT;Z,T]» =1-0.77ln =~ 4+ 0.315 (ln > (€2))]

Pl = (0.79 ~0.023-In m) :

(1 — cos (2 — (0.359 +0.1631(7,,,,0.150) I 0.189) In T ))
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Fig. 3 Overview of key studies employing analytical formulations to model non-spatial correlation
across different IMss. Note: BC06:Baker and Cornell (2006), GH08:Goda and Hong (2008), BJ08:Baker
and Jayaram (2008), GA09:Goda and Atkinson (2009), C13:Cimellaro (2013), Blla:Bradley (2011a),
Bl1b:Bradley (2011b), B12:Bradley (2012)

Pz p, = (0.64—0.021In VT inTomaz-

T T T (33)
(1 — cos (2 - (ln T:“:) (0.29 +0.0941(7,,,. o 150y I o.Tég) ))

where I(1,,... ..1s0) €quals 1 when Th,in<0.180 and O otherwise. Here, T2 and Ty, Tep-
resent the maximum and the minimum of the two periods of interest, T; and T3.

Similarly, Baker and Jayaram (2008) computed Pearson’s correlation for total residuals
of Sa(T") by accounting for rotation of the horizontal components of the acceleration using
geometric mean. Baker and Jayaram (2008) utilised the next generation attenuation (NGA)-
W1 ground-motion database (Chiou et al. 2008) to develop a fitting model that evaluates a
broader range of spectral acceleration periods, described by the equations detailed below:
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™ Tmax
Cy=1—cos (= —0366In(——m
! o8 (2 " <max(Tmin,0.109)>)’

Cy— {1 —0.105 (1 = tzmmormm=s) (F2=tmin —0.0099)  if Tinax < 0.2,

0 otherwise.

(34)
_ Cy if Tinax < 0.2
3730, otherwise
77Tmin
C4 :Cl +0.5(\/ Cg —03) 1+ cos
0.109
T, T; = Cy, if Tinax < 0.109
pr, T; = C1, else if Tiyax > 0.109,
' (3%5)

pr;,1; = min(Cy, C3),  else if Thax < 0.2,
pr.,1; = Ca, else

Expanding on this approach, Huang and Galasso (2019) developed a non-ergodic GMM
for Italy, incorporating empirical correlations for amplitude-type IMs, including PG A and
Sa(T) at 29 periods ranging from 0.01 to 4 seconds. The analysis focused on total residu-
als and used empirical data to derive analytical correlation models specific to Italy. A key
finding was that correlations between Sa(7;) — Sa(T}), and Sa(T') — PG A exhibit no sig-
nificant dependence on magnitude and distance. In contrast, Sa(T') — PGV correlations
were shown to be significantly influenced by the large magnitude and short distances. The
correlation formulation between Sa(T") was defined as follows:

T Tnax .
= =1-cos|=-0231ln{ ——— f Tinax 1
P, T; Cy cos (2 0.23511n <max(Tm;n, 0.1>>) , 1 >0

1 71max - Tmin .
=Cy =1-0.0617 (1 - elOOTme) x ( e 0.0099) . else if Thax > 0.1

(36)
=min(Cy, C3), else if Thax > 0.2

T‘min
—Cy=C) 403131 (\/c1 - cl) x [1 + cos <7T071>} . else

For correlations involving Sa(T) — PGA and Sa(T) — PGV, the following general
model was formulated:

psuiry, = D) O]y, [qm In <T>} ()
%

where ¢1, ¢, ¢3 and ¢4 are model fitting parameters, whose complete description can be
found in Huang and Galasso (2019)).

Goda and Hong (2008) and Goda and Atkinson (2009) extended the study of non-spatial
correlations for different Sa(T") periods T; and T} (i.e., cross-IM correlation). Although
based on different databases, both works partitioned the total residuals computed by Baker
and Cornell (2006) into within-event and between-event residuals using Eq. (38), and devel-
oped correlation functions for each type of residual.
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_ P8BiSB; TiTj + PsWi 6, 0i0; 38)

0;03j

PST;,6T;

where psT, 51,5 P5B;,5B;, and psw, sw, represent the correlations for total, between-event,
and within-event residuals for IM; and IM;, respectively, and the corresponding standard
deviations are o, 7, and ¢. Those studies utilised 592 ground motions from California earth-
quakes and 8557 ground motions from K-net and KiK-net databases, respectively, to model
the correlation of total and within-event residuals across spectral acceleration periods, fol-
lowing the same methodology of Baker and Cornell (2006). Due to data limitations, Goda
and Hong (2008) assumed the between-event residual correlation to follow Eq. (30), as pro-
posed by Baker and Cornell (2006). In contrast, Goda and Atkinson (2009) using K-net, and
KiK-net databases derived the following correlation function for between-event residuals:

0.728
1 ™ Tmln
PsBisB; =3 <1 — CoS {2 - l1.374 +5.58617,,,, 005 ¥ (me)

T/I'VLUAZ' Tmaz‘
% logg <0_25 ﬂ logyq (T ) }) (39)
1 TTTL(ZI
+ 3 {1 + cos {—1.510g10 (Tmm )] }

Other studies have focused on non-spatial correlation of IMs beyond the spectral accelera-
tion at different periods. Bradley (2011a, 2011b), and Bradley (2012) developed analytical
formulations to fit empirical correlation coefficients using ground motion data from the
NGA-W1 Database. These models describe the correlation between Sa(1") and other IMs,
including significant duration, Dss75, D595, PGA, ASI, SI,and PGV. Bradley (2011a)
proposed a functional form to represent the correlation coefficient between significant dura-
tion (both Dss75 and Dssgs) and Sa(T') over periods ranging 0.01 - 10s:

In (be1>

Pln Dsgy,ln Sa(T) = ap-—1 + (b[an - an—l} bn—l S T < bn (40)
n n
=)

n—1

where Ds,,, represents the two possible significant durations (Dss75 and Dssgs), and ap,
b, are empirical constants defining correlation and specific periods of vibration, respec-
tively, with further details available in Bradley (2011a)). On the other hand, Bradley (2011b)
and Bradley (2012) developed a different functional form for the correlation between Sa(7')
and remaining IMs mentioned before with the functional form:

+b —-b T
Pn IM; In So(T) = n > n_ o 3 " tanh {dn In <c)] en-1 <T <e, (41)
n

where I M; represents the considered intensity measure, a,, b,, ¢, and d,, are empirical
constants specific to each correlation model and e,, represent period ranges for different
segments. Again, for details see Bradley (2011b) and Bradley (2012).
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3.2 Empirical data

Similar to the works previously described that utilised Pearson’s correlation followed by
analytical functional forms, further studies, illustrated in Fig. 4, focused on simply provid-
ing the raw empirical correlation coefficients. The empirical correlation was tabulated by
extracting paired observations across various ground motions and IMs. This was computed
at discrete points, with the intention being that where direct data were unavailable for cer-
tain intensity measure pairs, linear interpolation is employed to estimate intermediate cor-
relation values.

Studies like Akkar et al. (2014), Baker and Bradley (2017), Tarbali et al. (2023) focused
on correlating IMs representing various ground motion characteristics, such as amplitude
(PGA and PGYV), frequency content (Sa(T"), ASI, SI, and DSI), significant duration
(Dss7s5, and Dssg5), and cumulative effects (C AV, and Ia), on the other hand, Bradley
(2011a) computed correlations for Sa(7T) residuals alone. Bradley (2011a) used seven
GMMs and primarily sought to understand the relationship between significant durations
and several other IMs. It was found that Dssr5 and Dssg5 tend to be negatively correlated
with high-frequency amplitude-based IMs, weakly negatively correlated with moderate-fre-
quency amplitude-based IMs, and weakly positively correlated with low-frequency ampli-
tude-based IMs and cumulative absolute velocity. Akkar et al. (2014) developed GMMs to
estimate horizontal and vertical damping scaling factors, as well as vertical-to-horizontal
Sa(T) ratios, using a subset of the pan-European strong-motion RESORCE database. With
these GMMs, empirical correlations between Sa(T") residuals for periods ranging 0.01 and
4 seconds were computed, and are presented in Fig. 5(a).

Baker and Bradley (2017) and Tarbali et al. (2023) investigated IM correlations using a
NGA-W?2 ground motion database. Baker and Bradley (2017) also found that IM correla-
tions are largely independent of magnitude, distance, and other site parameters. An example
of the Sa(T") — Sa(T) correlation developed by Baker and Bradley (2017) is illustrated
in Fig. 5(b), showcasing how this correlation behaves across different periods. Building
on previous work and using the same database as Baker and Bradley (2017), Tarbali et al.
(2023) analysed the correlation of various IMs for ground motions containing near-fault

IMs Study | GM Database

| NGA 1
B Database

| RESORCE
Al4 Database

TBB23

Amplitude
Duration
Cumulative
Frequancy content

Empirical Data

NGA 2
Database

BB17

o I

& J

Fig.4 Overview of key studies employing empirical data from Pearson’s correlation to model non-spatial
correlation. B11:Bradley (2011a), A14:Akkar et al. (2014), TBB23:Tarbali et al. (2023), BB17:Baker and
Bradley (2017)
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Fig. 5 Correlation contour of empirical Sa(T) — Sa(T') coefficients developed by (a) Akkar et al.
(2014) and (b) Baker and Bradley (2017)

directivity velocity pulses. Their findings indicate that IM correlations for directivity ground
motions are generally consistent with existing models such as Baker and Bradley (2017) for
non-pulse-like ground motions. Any observed differences were attributed to variations in
the ground-motion distribution or sample size (Tarbali et al. 2023).

3.3 Artificial neural networks

While the previous sections have developed models based on either empirical tables of
coefficients or by fitting analytical functional forms to such data, machine learning meth-
ods have emerged as transformative tools in earthquake engineering and have also been
implemented in correlation modelling. In this context, it is important to note that the data
modelled still consists of residuals derived from GMMs, and the fundamental assumptions
underlying these residuals remain unchanged. What distinguishes the use of ANNs is the
replacement of traditional analytical fitting functions, which rely on predefined functional
forms and assumptions to model correlation coefficients, with a data-driven approach capa-
ble of directly representing complex relationships from the data. Aristeidou et al. (2024)
utilised ANN-based regression models to estimate correlations for several well-established
and next-generation IMs, including PGA, PGV, PGD, Sa(T), Dss7s, D595, Stavg(T),
and FIV3(T). Their study showed that ANN-derived correlation estimates exhibit lower
residual errors and better alignment with empirical data.

4 Spatial correlation modelling using the same IMs

4.1 Analytical formulations

Contrary to the formulations presented in Sect. 3, which focus on non-spatial correlation,
several studies have developed models to describe inter-site correlation for the same IM.
These models predominantly use exponential decay functions to explain the decreasing cor-

relation with increased distance. Most studies in the literature, particularly those involving
typical IMs such as PGA, PGV, and Sa(T") with the same period 7', have developed spa-
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tial correlation models using different ground motion databases, depending on the specific
goals of the study, as illustrated in Fig. 6.

Goda and Hong (2008) investigated spatial correlation relationships for PGA and
Sa(T). For the latter IM, they derived equations to fit the correlation coefficients obtained
using Eq. (38), adapted for total residuals of the same 7; in Sa(T) as follows:

psr(h,T}) = psn(Ti) - [T(Ti)][a—gjg(;];g(h,:ri) [o(T))] w)

Since the analysis considers ground motions from the same seismic event across multiple
site locations, the between-event residuals are fully correlated, meaning psp(7;) = 1 and
the expression simplifies to:

\\
)
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Fig. 6 Overview of key studies that employed analytical formulations to model spatial correlation for
a single IM. B03:Boore et al. (2003), GH08:Goda and Hong (2008), GA09:Goda and Atkinson (2009),
S10:Sokolov et al. (2010), SW13:Sokolov and Wenzel (2013), HM19:Heresi and Miranda (2019),
HM21:Heresi and Miranda (2021), AHP22:Aldea et al. (2022)
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Alternatively, Eq. (44) was also proposed by Goda and Hong (2008) to calculate the spatial
correlation of total residuals introducing term [o4(h, T})]?, firstly proposed by Boore et al.
(2003), representing the variance of the difference of within-event residuals between two
locations separated by a distance h, (i.e., 0W,, x(T;) — 0W,, 1 (T;), where k denotes the
earthquake event and n and m represent distinct site locations). This term [o4(h, T})]?, cap-
tures the spatial correlation structure of within-event residuals and was initially investigated
by Boore et al. (2003) in the context of PG A residuals.

psr(h,Ti) =1 — 2[0(T7)]?

(44

Goda and Hong (2008) applied two approaches to model within-event spatial correlation
of residuals. The first approach involved the direct evaluation of the sample Pearson’s cor-
relation coefficient, as given by Eq. (45). The second approach was based on [o4(h, T})]?/2
and formulated by Eq. (46). Several studies have employed exponential fitting to model the
decay of spatial correlation with distance, using two fitted parameters, o, and 3 that depend
on the IM used, as shown in Eq. (47). For Californian earthquakes, Goda and Hong (2008)
explored this exponential fitting. Similarly, Sokolov et al. (2010) applied the same format of
exponential decay model to fit within-event residuals from Taiwanese earthquakes, incorpo-
rating correction factors into the GMM of Morikawa et al. (2008), who demonstrated that
grouping ground motion data at specific stations could reduce model uncertainty. Likewise,
Sokolov and Wenzel (2013) investigated the same decay pattern shown in Eq. (47) for Japa-
nese earthquakes, considering different soil type classifications and GMMs in the residual
calculations.

COV[Win(T3), Wi i (T3)]

pow 1) = EE )
N 1 [Ud(thi)]z

pow (1) = 1= oo 46)

psw (h, T;) = exp(a(Ty) - B*T)) 7)

A similar study by Goda and Atkinson (2009) using 7,780 records from 106 earthquakes
from the K-net and KiK-net databases, extended this approach. In addition to the previous
methods for calculating psw (h, T;) (Eq. (45) and (46)), a modified fitting method incorpo-
rating a third parameter, y(7;), was introduced:

psw (h, T;) = max [y(T;) - exp[—a(T}) - RPIT) — ~(Ty) 4 1; 0] (48)

Other studies, such as Heresi and Miranda (2019) and Aldea et al. (2022), used a different
exponential function to those presented earlier to describe the decay of spatial correlation
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with distance. This alternative exponential formulation has also two parameters «, and £,

as:
h a(Ty)
psw(h,T;) = exp [— <5(T¢)> ] 49)

Both studies developed spatial correlation models using Eq. (49). Heresi and Miranda
(2019) analysed 39 worldwide seismic events from active shallow crust regions and found
that the parameter «(7;) remained relatively constant across different IMs and fixed it at
0.55. Similarly, Aldea et al. (2022), based on earthquakes from the Chilean subduction zone,
also fixed « at 0.59 to simplify the spatial correlation model. The 3 parameter, however,
was fitted individually for each event. Heresi and Miranda (2019) also performed Monte
Carlo simulations to incorporate the event-to-event variability of the within-event term in
the spatial correlation model, rather than considering one correlation model from a single
event or set of events. As a result, they developed spatial correlation models for PG A and
Sa(T) with median, /3, and standard deviation, o, represented as:

. 4.23172 — 5.1807 + 13.392 if T < 1.37s 50
T 10.1407?% — 2.249T + 17.050 if T > 1.37s (50)
o(T) = 4.63 x 107372 + 0.028T 4 0.713 (51)
For the Aldea et al. (2022) model, the median Bis given by:
14.400 — 17.000T if T <0.40s
. 14.743 +7.795In(T") if 0.40s <T < 0.75s 52
T ) 12.500 if 0.75s <T < 3.00s 2)

5.063 + 6.769In(T) if 3.0s < T < 10.00s

For the Heresi and Miranda (2019) model, if no uncertainty is considered, the standard
deviation is given by Eq. (51). Otherwise 8 is modelled as a lognormal random variable
with parameters In(3) and o (7). If additional epistemic uncertainty is considered, o (T
may be scaled by a user-defined uncertainty factor.

Due to the current lack of direct formulations for calculating the spatial correlation for
SGqvg(T), Heresi and Miranda (2021) investigated an indirect approach based on Sa(T’)
-based correlation models and the intrinsic relationship between these two IMs. The results
was an equivalent correlation model for Saq.4(7T') at two distinct locations denoted as sites

m and n and is given as:

N N

1

N2 ZZplnsumﬂ,,J“Sa@m, FOnsacry, T Imsacry), (53)
i=1 j=1

PInsag,q (1), MSageg (1), —

OMSagyg (T~ TMSagug (1),
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where pin, (T M sa(r;), TEPresents the cross-IM spatial correlation coefficient (Sect. 5)
between two sites m and n at spectral periods T; and T}, and IV is the total number of peri-
ods considered in the range ¢ in Eq. (4). The term omg, ., ~corresponds to the standard
deviation obtained from the GMM used to compute the residuals for Sa(T’) at site m and
period T;. Meanwhile, o1ng, . . ,, denotes the standard deviation of Saqug (T"), which can
be derived indirectly using standard deviations of Sa(7T') values, following the approach
(Kohrangi et al. 2017):

N N

1
Olnga g (m) — N2 E E :leSa(Ti)vlnSa(Tj) “Olnga(r;) 'Ulnsu(Tj) (54
i—1 j—1

4.2 Semivariograms

Several studies, as shown in Fig. 7, have employed semivariograms, introduced in Sect.
2.4.2 to model or quantify spatial correlation using a single IM. In practice, the semivario-
gram models are often applied to data with specific parameter values, such as the sill and
range.

IMs Study | ' GM Database
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and ITACA
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[ Semivariograms }7
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»  WTO05
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Fig. 7 Overview of key studies that employed semivariograms to model spatial correlation for a sin-
gle IM. WT05:Wang and Takada (2005), JB09:Jayaram and Baker (2009), EI11:Esposito and Iervolino
(2011), EI12:Esposito and Iervolino (2012), PS12:Foulser-piggott and Stafford and (2012), DW13:Du
and Wang (2013), S19:Stafford et al. (2019)
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While semivariograms and analytical formulation both aim to characterise spatial depen-
dence in ground motion residuals, they do so from different statistical perspectives. Analyti-
cal models typically regress Pearson’s correlation coefficients against inter-station distance,
providing a direct measure of linear correlation. In contrast, semivariograms quantify how
the variance of the residuals increases with separation distance and infer the underlying
covariance structure from this relationship. As a result, semivariogram-based approaches
offer greater flexibility in representing spatial variability, particularly when the variance
does not adhere to the assumptions implicit in Pearson-based regressions. These meth-
odological differences may lead to variations in the inferred correlation lengths and have
implications for their practical application in seismic hazard analyses.

One of the early studies to apply semivariogram-based modelling to characterise the
spatial correlation of total residuals was Wang and Takada (2005). In their analysis of PGV
residuals from five Japanese earthquakes and the 1999 Chi-Chi earthquake in Taiwan, they
proposed a macro-spatial correlation model with an exponential decay function of the form:

p(h) = exp(—h/b) (55)

where h is the separation distance and b is a correlation length parameter estimated from the
data (i.e., range). Two different GMMs were considered for the calculation of PGV values
(Annaka et al. (1997) and (Midorikawa and Ohtake 2002)) and consequently, using Eq. (9)
to calculate PGV residuals, to be applied in the semivariogram.

The classical semivariogram estimator, originating from geostatistics, is thoroughly
documented in Cressie (1993). In the context of earthquake engineering, spatial correlation
modelling of ground motion within-event residuals was introduced by Jayaram and Baker
(2009). Their study developed a global correlation model that accounts for the clustering
of V30 values, utilising data from seven historical earthquakes. The spatial correlation was
modelled using an exponential function:

p(h) = exp(—3h/b) (56)

In this formulation, the parameter b is a function of 7" and the presence of V3o clustering.
The expressions for b are as follows:

e No clustering of V3¢ values (for 7' < 1 second):
b=8.5+17.2T (57)
e With clustering of Vi3g values (for 7' < 1 second):

b=40.7+15.0T (58)
e For T > 1second (regardless of clustering):

b=22.0+37T (59)
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However, the classical estimator is known to be sensitive to outliers. To address this issue,
robust alternatives, such as Cressie-Hawkins estimator (Cressie and Hawkins 1980), are
often preferred to enhance reliability. Several studies have compared classical and robust
semivariograms in the development of spatial correlation models across different ground
motion databases.

For instance, Schiappapietra et al. (2022) proposed three spatial correlation models tai-
lored for distinct regions of Italy, namely, northern, central and southern Italy. These models
underscore the importance of accounting for spatial correlation and associated uncertainties
in seismic risk analyses. Each model follows the exponential form of Eq. (56), with the
parameter b expressed as a function of the period 7'. The models, valid for PG A and Sa(T)
up to 2seconds, are given as:

e Northern Italy:

 (27.48 —52.20 - (T — 0.55), for T < 0.55
b(T) = {27.48 41581 (T = 0.55), for T > 0.55 (60)
e Central Italy:
(1787 -852-(T—1), T<1
b(T) = {17.87 4785 (T—1), T>1 (61)
e Southern Italy:
b(T) = 23.25 — 5.44- T (62)

In contrast, Esposito and Iervolino (2011) and Esposito and Iervolino (2012) focused on
broader applications of robust semivariogram estimators, analysing spatial correlations in
ground motion residuals across European and Italian ground motion databases for a variety
of IMs, including PGA, PGV, and Sa(T).

Using the NGA-W1 database (Chiou et al. 2008), studies such as Jayaram and Baker
(2009) and Du and Wang (2013) made significant contributions to spatial correlation
research involving Sa(7T"). While both studies focused on spatial correlation, Du and Wang
(2013) extended the analysis to include correlations based on V3¢ values for C AV and Ia.
In this study, a similar global spatial correlation model for Sa(7") was developed using the
same formulation for calculating correlation as detailed in Eq. (56). Additionally, Foulser-
Piggott and Stafford and (2012) conducted a focused study on /a using the same NGA-W1
database. Stafford et al. (2019), on the other hand, developed a spatial correlation model for
Sa(T) using semivariograms applied to a dataset of induced earthquakes from the Gronin-
gen gas field in the Netherlands. While the methodological approach is similar, their study
differs in the type of seismicity and its regional focus, addressing spatial correlation under
the specific characteristics of induced seismic events.
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4.3 Methodology accounting for path and site effects

Recent advancements have emphasised non-stationary and anisotropy patterns of spatial
correlations. For example, Bodenmann et al. (2023) introduced an innovative framework for
considering these concepts in spatial correlations of ground motion IMs with site-specific
effects, addressing localised geological variability and improving the practical application
of spatial correlation models. In their methodology, they followed three assumptions, start-
ing with the assumption that the correlation between sites decreases as the Euclidean dis-
tance between them increases, and for this assumption, they use an exponential function
described by Eq. (63), which has the same formulation presented, for example, in Eq. (49).

pe(dp;YE) = exp(—(de/lE)"") (63)

where dg is the Euclidean distance between two sites (see Fig. 8), [ is the length scale in
kilometres, v € (0,2), and ¢ is a vector that contains all possible combinations for I
and vgp.
The second assumption is that the correlation between two sites may also depend on
their position relative to the earthquake rupture, so the epicentral azimuth, 6, was used to
characterise this relative position and assumed that correlation between sites decreases as
the difference in their azimuths increases as given by:

paldasla) = (1+da/la)(1 - da/180)1%/14) (64)
where d 4 is the angular distance, represented in Fig. 8 and [ 4 is the length scale in degrees

and can vary between 0° and 45°.
The last assumption is that sites with similar soil conditions may have stronger correla-

tions. As shown by Eq. (65), an exponential form was used for the correlation decay using

Vvsg() values.

ps(dsils) = exp(—ds/ls) (65)
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where dg is the absolute difference between two sites V3o values, illustrated in Fig. 8 and lg
is the length scale in ms~! (€ RT). In the end, to simultaneously account for spatial prox-
imity, path, and site effects they introduced the correlation methodology EAS represented
by Eq. (66). Their methodology emphasised enhanced accuracy in regional risk assessments
by considering variations in spatial correlation patterns across multiple IMs and leveraging
high-resolution site characterisation data.

peAs(dE;da;ds;Veas) = pe(de) - (wpa(da) + (1 —w)ps(ds)) (66)

where w is the weight parameter (€ (0, 1)), and ¥4 is a vector that collects all possible
combinations for vg,lg,l4,ls and w.

Beyond its mathematical formulation, this methodology also carries several practical
implications. By explicitly incorporating spatial proximity, path geometry, and site-con-
dition similarity, the EAS model can reduce the effective aleatory variability in predicted
ground motion, particularly in regions where local geologic variability strongly controls
spatial patterns. The model is calibrated using recorded ground motion in combination with
high-resolution site-characterisation data, enabling its parameters to reflect regional attenu-
ation behaviour. An advantage of this approach is its ability to represent non-stationary and
anisotropic correlation structures that traditional isotropic models discussed in Sec.ts 4.1
and 4.2 cannot capture. However, this flexibility requires more detailed site information and
a sufficiently dense seismic network for robust calibration, which may limit its applicabil-
ity in data-scarce regions. Although the methodology is relatively recent, it has already
motivated extensions in related fields; for example, similar principles have been applied
to spatial correlation in liquefaction hazard modelling (e.g., Pretell et al. 2024), indicating
growing interest in path- and site-aware spatial models.

4.4 Non-ergodic ground motion models

Traditional studies have modelled spatial correlation as a function of inter-site distance,
assuming stationarity and isotropy, but emerging research has shown that these assumptions
may not hold in all cases, particularly in regions with complex geological structures or site-
specific effects (Bodenmann et al. 2023). Recent studies have made significant advances in
refining spatial correlation models within the context of non-ergodic ground motion models.
For example, Sgobba et al. (2019), using the non-ergodic GMM developed by Lanzano et
al. (2017), investigated the spatial correlation of ground motion residuals in Italy, highlight-
ing the impact of regional geology. Huang and Galasso (2019) analysed the implications
of spatial correlation for infrastructure vulnerability assessments, providing insights into
site-to-site variability. Kuehn and Abrahamson (2020) proposed methodologies to incor-
porate non-ergodic corrections into GMMs, emphasising the need for improved epistemic
uncertainty qualification, and Liu et al. (2023) explored regionalised GMMs that account for
spatially varying source, path, and site effects using records from the Ridgecrest database
(Rekoske et al. 2020).

Kuehn and Abrahamson (2020) and Liu et al. (2023), additionally, developed spatial cor-
relation models specifically for systematic source, path, and site effects, which can be seen
in Eq. (29), modelled as functions of geographical coordinates of earthquakes, x, and sites,
T, assuming Gaussian processess (GPs):
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OL2L = fi(xy) ~ GP(0, k(zy,xy,)) ©67)
§P2P = fo(wy,x5) ~ GP(0,k([zx, x4, [, 1)) (68)
0528 = fa(ws) ~ GP(0, k(xs, ) )

where k(z, 2'), k([zk, x5, [x}, 2}]), and k(xs, x) are covariance functions for source, path
and site effects, respectively. Thus, the main residuals (6B, WS, and §.5) follow a mul-
tivariate Gaussian distribution where the variance is represented by the systematic effects
explained by covariance functions and the aleatory effects explained by 6;; multiplied by the
aleatory standard deviations as (Liu et al. 2023):

6B ~ N(0,k(ze,zl) + 6:;73) (70)
5WSNN(O,]{I([{L'E,:L'S],[Z‘/@,IL';]) +6ij¢%,w5) (71)
98 ~ N(07 k’(ﬂ:s, .7;‘;) + 5ij¢(2),525) (72)

where §;; takes the value 1 if two earthquakes, paths or sites are identical. For more detailed
information regarding the covariance functions see, for example, Paciorek and Schervish
(2006), Kuehn and Abrahamson (2020), Liu et al. (2023).

To model source-effects, Kuehn and Abrahamson (2020) assumed several stationary
covariance functions, such as exponential, squared exponential, spherical and a special case
of the Matérn class of covariance functions. Eq. (73) shows the typical isotropic covariance
function (exponential form) used by Kuehn and Abrahamson (2020):

!
k(e a) = Tiar (W) (73)

To demonstrate what a stationary covariance function represents for the source-effect spatial
correlation, an exponential covariance function was used for two events in Fig. 9. Since the
covariance function only depends on the distance between two events, the shapes of the two
correlations for the two events are the same.

To account for fault geometry, using an isotropic covariance function may be inappropri-
ate. For instance, in a fictitious scenario like the one shown in Fig. 10(a), a pair of earth-
quake epicentres on the same fault (red pair) should exhibit higher correlation than a pair
on different faults (blue pair), even if they share the same separation distance. To address
this, Liu et al. (2023) applied the following equation, originally proposed by Paciorek and
Schervish (2006), to construct an anisotropic and non-stationary positive definite covari-
ance function:

k(e, 2,) = 1257272 A (o) "2 | A (20) "2 | Ale) + All)| 7% exp(—V/Q(ae, 1)) (74)
Equation (74) follows the form of a non-stationary squared exponential covariance function.

However, instead of a spatially constant Kernel matrix, the function incorporated A(z.),
which gives non-stationary and anisotropic behaviour. The premultiplication in Eq. (74)
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Fig. 9 Correlation of source effects for two sites using an exponential stationary covariance function

a c

(a) (b)

Fig. 10 (a) Illustration of spatial stationarity: two pairs of earthquake epicentres (blue and red circles)
have equal separation distances, but are located on different fictitious faults. The red pair lies along the
same fault, while the blue pair spans across two distinct faults (black lines), potentially resulting in similar
correlation despite differing geological contexts and (b) illustration of a stationary covariance function for
path effects. Two pairs of stations (a—b and c—d) have equal inter-station distances and therefore exhibit
the same correlation, despite pair a—b being farther from the source region and expected to show higher
correlation due to more similar propagation paths

ensures the positive definiteness of the covariance function (Liu et al. 2023). Here, D repre-
sents the dimension of x., A(x.) is a D by D matrix-values function that describes the rela-
tionship between correlation length and the earthquake location z, and Q(x., z.) defines a
generalised squared distance (i.e., a Mahalanobis-type quadratic form) between points z.
and z,, according to their respective anisotropy matrices (for more details, see Paciorek and
Schervish (2006)).

To model spatial correlation for path effects, Liu et al. (2023) and Kuehn and Abraha-
mson (2020) employed a similar covariance function as in Eq. (74). However, in this case,
the quadratic function, @, is expressed in terms of between-site or between-earthquake dis-
tance, considering paths from the same earthquakes or to the same sites. This formulation
accounts for path effects, as demonstrated in Fig. 10(b), where two site pairs (a-b and c-d)
share the same between-site distance. The pair farther from the epicentre (¢ — d) is expected
to exhibit higher correlation due to more similar propagation paths (Liu et al. 2023). If path-
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effects originate from the same earthquake or travel to the same site, the covariance function
is given by:

k(lws, wellt, @) = bop2P ?|Aws, )| 2 A e, )2

(A ) + e 2)| 0 exp (—v/Qfew, el 1)) )

(75)

Otherwise:

k([zs, we] [z, 2c]) = 0 (76)

In terms of modelling spatial correlation of site effects, Kuehn and Abrahamson (2020) did
not account for it; such correlations can be incorporated using nonstationary correlation
functions (Chen et al. 2021) or through isotropic and stationary covariance functions based
on between-site distances, as described by Liu et al. (2023):

Ts — X,
k(zs, 7)) = ¢éag exp (”lH) (77

Using non-ergodic GMMs enables the partitioning of IM residuals, which allows the spatial
correlation structure of systematic effects to be estimated. Studies such as Kuehn and Abra-
hamson (2020), Liu et al. (2023), among others, developed spatial correlation models based
on this approach. They proposed isotropic and stationary models for source and site effects,
as well as anisotropic and non-stationary models that account for fault geometry and path
effects. Liu et al. (2023) found that anisotropic and non-stationary models more accurately
captured fault geometries and extrapolated more reliably to data-sparse regions compared
to isotropic and stationary models, particularly for source and path effects. In contrast, the
isotropic and stationary model performed well in capturing the spatial distribution of site
effects. Liu et al. (2023) compared their results with those from Kuehn and Abrahamson
(2020) and found consistent spatial correlation structures for path effects across different
regions, suggesting that the models may be transferable.

4.5 Physics-based simulations

Physics-based simulation represent a key development in the availability of ground motion
signals. In terms of ground motion correlations, a key contribution was made by Chen and
Baker (2019) who used PBS to investigate intra-event spatial correlation in California. It
highlighted the importance of considering regional geological conditions and source char-
acteristics in shaping spatial correlation patterns. Importantly, they demonstrated that PBSs
can replicate key trends observed in empirical models, while also offering the flexibility to
explore spatially beyond the limitations of observed data. Their findings suggest that non-
stationary and anisotropic spatial correlations depend on source effects, path effects, and the
relative location to the rupture, for example at small distances, sites located near the same
portion of the fault rupture tend to exhibit stronger correlation due to shared source effects,
at moderate to large distances, correlation is more influenced by shared wave propagation
paths, and sites on opposite sides of a rupture can even display negative correlation, reflect-

@ Springer



Bulletin of Earthquake Engineering

ing complex rupture-relative spatial dependencies. Infantino et al. (2021) applied PBS to
simulate the 1978 Volvi earthquake in Northern Greece, using the spectral elements in elas-
todynamics with discontinuous Galerkin (SPEED) code (see https://speed.mox.polimi.it/).
Their study examined the spatial correlation of synthetic ground motion IMs, providing evi-
dence for anisotropic correlation patterns. The results showed a notable difference between
fault-normal and fault-parallel components, with correlation ranges increasing with period
and reaching values up to =~ 64km for long-period motions. These findings challenged the
conventional assumptions of isotropic and stationary correlation structures often adopted in
ground motion models and suggested that fault orientation and directivity play an important
role in spatial correlation characteristics. Expanding on this, Schiappapietra and Smerzini
(2021) conducted a detailed scenario-based simulation for the 2016 Norcia earthquake in
Central Italy, again using the SPEED code. They generated over 4,000 synthetic ground
motion records across an 80km x 80km domain, capturing various fault-relative direc-
tions. Their study systematically evaluated the correlation of ground motion IMs, confirm-
ing the non-stationarity and anisotropy of the correlation structure. They demonstrated that
spatial correlation varies depending on the relative orientation to the fault, particularly for
near-source stations. Furthermore, they provided a comparative assessment between simu-
lated and empirical correlation models (e.g., Jayaram and Baker (2009)), identifying sig-
nificant deviations and reinforcing the need for simulation-informed models in complex
seismo-tectonic regions.

Lin and Smerzini (2022) extended the work by Infantino et al. (2021) for constructing
an updated 3D numerical model for the Thessaloniki region, incorporating both Thessalon-
iki and Mygdonia basins and adjusting the crustal velocity model. They simulated ground
motions for earthquake scenarios with magnitudes between 6.5 and 7. They observed a
maximum correlation range of ~ 64km for long periods and =~ 20km for shorter periods.
Zolfaghari and Forghani (2024) explored spatial correlation variability using a large data-
base of broadband ground motions simulated for Istanbul. Their simulations included 65
earthquake scenarios and over 7,343 virtual stations, allowing for unprecedented resolu-
tion in examining spatial correlation across varying source, path and site conditions. They
employed both traditional geo-statistical methods and a non-linear, non-stationary approach,
calculating correlation coefficients for every station pair. Their results highlighted that spa-
tial correlation is highly sensitive to source rupture complexity, path characteristics, and
local geology. They also observed that station pairs with similar soil conditions and those
orientated perpendicular to the rupture tend to exhibit higher correlations, consistent with
the findings of Monteiro et al. (2026) showcasing the anisotropic and site-dependent nature
of spatial correlation.

5 Spatial correlation modelling using different IMs

5.1 Analytical formulations

As with same IM spatial correlation, several studies have focused on modelling cross IMs
spatial correlation through analytical formulations. These formulations typically use decay

functions to describe how the correlation between IMs varies with distance. These analytical
approaches are particularly useful, as they provide a simplified and computationally efficient
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means of estimating spatial dependencies in the available data. Notable studies adopting this
approach include Goda and Hong (2008) and Goda and Atkinson (2009). As shown in Fig.
11, the first study investigated the spatial correlation of Sa(7T’) responses using earthquake
records from California and the Chi-Chi in Taiwan. In contrast, employing similar meth-
ods (Goda and Atkinson 2009), focused on data from the K-NET and KiK-net networks in
Japan. These studies adapted Pearson’s correlation formulation, originally described for the
same spectral acceleration periods (Eq. (42)), to focus instead on the spatial correlation of
residuals between different periods. The adapted formulation is shown in Eq. (78). Specifi-
cally, Goda and Hong (2008) and Goda and Atkinson (2009) proposed different analytical
formulations to describe spatial correlations between Sa(7') at different periods. The fol-
lowing equations illustrate their methodologies for modelling these inter-period spatial cor-
relations for total and within-event residuals. The total spatial correlation is given by:

_ ps8(Ti, Ty) - 7(T3) - 7(T5) + psw (h, T, Ty) - ¢(T3) - ¢(T5)

pgT(hyTiaTj) = U(Ti)U(Tj) o

where psr(h,T5,T;), psp(T;,T;), and psw(h,T;,T;) represent the spatial correla-
tion of total, between-event, and within-event residuals, respectively. The corresponding
standard deviations are denoted as o(T;) and o(Tj) for total residuals, 7(T;) and 7(T;)
for between-event residuals, and ¢(7;) and ¢(7T};) for within-event residuals. Goda and
Hong (2008), proposed an alternative expression for psr(h,T;,T;) that is based on the
[oalh, T;, Tj)]2, proposed firstly by Boore et al. (2003), which represents the variance of
[0Bx(T;) + Wi i (T;)] — [0Bk(T;) + Wy ()] for event k and sites m and n. This
term was previously described in Sect. (4.1) for Sa(T') at a single T3, but it is now extended
to different periods 7; and 7. This alternative expression allows for the calculation of the
spatial correlation of total residuals, not depending on between-event or within-event mod-

els. The quantity [o4(h, T}, Tj)]2 can be written as:

[oa(h, T;, T)))* = Var (0Bk(T;) + 0Wim(T3)) — (6Bi(Tj) + 0Wi n(T5)))

79
IMs Study GM Database
Analytical . :
[ Formulations ]7 Sa(Ti)-Sa(Tj)
K-NET and

_

Fig. 11 Overview of key studies that employed analytical formulations to model spatial correlation for the
same IMs. GH08:Goda and Hong (2008), GA09:Goda and Atkinson (2009)
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where h represents the distance between sites m and n. Because 6 B and 6V are considered
independent, Eq. (79) can be expanded as:

[0a(h, T;, T;))* = Var (6 By(T;) — 6 Bi(T})) + Var (§Wp m (T) — 6Win(T}))
=7(T3) + 7°(Ty) — 2 psp(T3, Ty) - 7(Ty) - 7(T5)

80
FOAT) + A(T) ~ 2 po (T T) 9T 9Ty
=o*(T;) + o*(T}) — 2 psr(h, T}, Tj)o(T;) - o(T})
Therefore, pst(h, T;, T;) can be rewritten as:
2
,D(ST(th’iaTj) _ UQ(T’L') + Ug(Tj) - [Ud(h’7 TMT‘])] (81)

2-0(Ti) - o(T})

For between-event correlation, Goda and Atkinson (2009) used the formula presented by
Eq. (39) and Goda and Hong (2008), and as mentioned before in Sect. (3.1), due to the lack
of data, it was approximated as:

péB(Ti,Tj) :p(ST(O»j—‘ivJ—Tj) :p5W(07E7TJ) (82)

which was represented as p5 . suggested by Baker and Cornell (2006) in Eq. (32).
T;,T;

For different periods T; and T, both studies mentioned before, modelled within-event
spatial correlation using the Markov-type screening hypothesis (Journel 1999):

PﬁW(h, Ti,a Tj) ~ P%’TJ : PéW(h, Tma:r,) (83)

where 7,4, represents the maximum period between 7; and 73, p}y 7 denotes any non-

spatial correlation model for Sa(T) (see Sect. 3) and psw (h, Tinaz) can be calculated using
any spatial correlation model for the same spatial correlation period, 7},4. (see Sect. 4).

With Eq. (82) describing the correlation of between-event residuals and Eq. (83) describ-
ing the spatial correlation of within-event residuals, Goda and Hong (2008) and Goda and
Atkinson (2009) reformulated Eq. (81), which represents the spatial correlation of total
residuals as follows:

ol 1 - Ie(T) - (L)) + psw (b Toa) - S(T3) - S(T)]
o(T) - o(Ty)

psr(h, T3, Tj) = (84)

5.2 Cross-semivariograms

When analysing spatial correlation across multiple ground motion parameters, such as spec-
tral accelerations at different periods or various IMs (e.g., PGA, PGV, etc.), a multivariate
approach is required. The multivariate random field extends the univariate case by repre-
senting the random function as a vector, with each component corresponding to a different
variable at a given spatial location. In the univariate case, spatial dependence is captured
using the semivariogram (see Eq. (14)). In the multivariate setting, the spatial dependence
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is of interest not only within each variable but also between different variables at the same
location. This is measured using the cross-semivariogram. For instance, let Zjz, () and
YASYS (z) denote the residuals of the random functions corresponding to two different inten-
sity measures, IM; and IM;. The cross-semivariogram between these two components is
defined as:

Yim;, v, (h) = %]E[(ZIMi () = Zrar, (x + h)(Zra () = Zin (x +h))] - (85)

This function captures both spatial variability and the relationship between these two differ-
ent variables. The empirical cross-semivariogram is then calculated, similar to Eq. (19), as:

yim; am; (h) = (2101, (o) — 2101, (T + 1)) (2101, () — 210, (20 + 1)) (86)

2N; i (h)

where N; ;(h) is the number of observation pairs for the two variables at a separation
distance h and {z7ar, (%0), 210z, (o + h)} represent the o'® data pair for the bin for i
component of the vector IM. Compared to the univariate approach (see Eq. (13)), here the
covariance function Cray, raz, (h) is calculated as:

Crum;,1u; (h) =Cov (ZHM,L (%), Zrp, (x + h))

(87)
=E [(Z1a,(x) = E[Z1ar, (2)))(Z1na, (x4 B) — B[ Z1; (2))])]

where under the stationary assumption, the mean of Zjp(z) is equal the mean of
Zinm(z + h). Similar to the relationship mentioned before in Eq. (17), for isotropic and
stationary fields, it can be written (Gooverts 1997):

Cra; i (h) = Cragy 11, (0) — ving,, 1, () (88)

So the spatial correlation, similar to Eq. (18), but now between two different intensity mea-
sures, I M; and I M;, can be calculated as (Wang and Wenqi 2013):

B Crum, i, (D)

B \/CIMi,I]VIZ (0) x Cra;,10, (0)

B Cru; 1, (0) 3 Yy, 10, ()

B \/CIMi,I]VIZ (0) x Cra;,10,(0) \/CI]\/I,i,I]W,i(O) x Cra;, 1, (0)

pia,,im;, (h)
(89)

The cross-semivariogram matrix, I'(h), Eq. (90), aggregates the semivariograms and cross-
semivariograms for all pairs of IMs into a single matrix representation. The covariance
matrix C(h), Eq. (91), for the multivariate random field can be derived using the semi-
variogram matrix, ensuring it remains positive definite, and the correlation matrix R(h),
Eq. (92), has the direct correlation coefficients on its main diagonal (when ¢ = j), and the
off-diagonal elements (when ¢ # j) represent the cross-correlation coefficients. Note
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that 4,5 € {1,2,...,N — 1, N} represents the different IMs analysed and ;s 1, (),
Cru; 1, (), and prag; 10z, (h) can be obtained using Egs. (86), (88), and (89), respectively.

yra, o (B)  yra o (h) o v vy (R)
ViMa, v (R) o+ i, rmy (R)
L'(h) = [via,, 100, (h)] = . (90)
sym :
YIMy,IMy (h)
Crary, i, (R)  Crany i, (R) -+ Crany raay (B)
Cravyints(R) -+ Cragy, iy (R)
C(h) = [Crm,,1m; (h)] = . : on
sym . :
Cramy,1nmy (h)
piaay g () prve v, (R) <o+ prae vy ()
PiMy My (R) o prag, iy (R)
R(h) = [pram;,1m; (R)]) = ) . 92)
sym " :

pray ivy (R)

Given that normalised within-event residuals can be reasonably modelled as following a
multivariate normal distribution, their spatial variability for a specific earthquake event
k is entirely described by their mean and covariance structure. In this context, the mean
is assumed to be a vector of zeros, while the covariance matrix, ¥, captures the spatial
dependencies among the M observation sites. For event &, the full covariance matrix X
is constructed by assembling the N x N sub-matrices C'(h) (as defined in Eq. (91)) cor-
responding to all inter-site distances:

C(h11) C(hi2) - C(him)
C(h21) C(h22) T C(h2M)

Y(event k)= : : . . 93)
Clhant) - - Clhawr)

Maintaining a positive definite covariance matrix is essential for valid spatial modelling,
as it ensures the physical plausibility of simulated random fields. Fig. 12 illustrates several
studies (e.g., Loth and Baker 2013; Wang and Wengqi 2013; Markhvida et al. 2018; Abbasne-
jadfard et al. 2020; Wengqi and Ning 2021; Monteiro et al. 2026) that have employed dif-
ferent fitting techniques to fit the cross-semivariogram models and guarantee the positive
definiteness of the covariance matrix.

5.2.1 Linear model of co-regionalisation

From Fig. 12, it can be seen that Loth and Baker (2013) and Wang and Wenqi (2013)
employed a methodology known as the linear model of co-regionalisation (LMC) (Gou-
lard and Voltz 1992). This approach accounts for the effect of multiple spatial scales and
assumes that all variables are linear combinations of shared underlying spatial structures
(Loth and Baker 2013). The general idea of LMC is to model multivariate spatial variation
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Technique

NGA 1
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Sa(Ti)-Sa(T))

NGA 2
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Sa(T), PGA, PGV,
CAV, la, Duration

NGA 2 and
Sa(T), PGA, PGV, MAO26 > ESM
FIV3, Saavg(Ti) Databases

Fig. 12 Overview of key studies that employed cross-semivariograms to model spatial correlation for
different IMs. LB13:Loth and Baker (2013), WD13:Du and Wang (2013), ABF20:Abbasnejadfard et al.
(2020), MCB18:Markhvida et al. (2018), DN21:Wengqi and Ning (2021), MAO26:Monteiro et al. (2026),
LMC (linear model of co-regionalisation), LD (latent dimensions), PCA (principal component analysis)

by expressing each spatial variable as a linear combination of a common set of orthogonal,
second-order stationary random fields. Formally, this starts with a set of n second-order sta-
tionary and mutually orthogonal latent random fields {Y,.(z),r = 1,...,n}, each with its
own direct covariance function C,.(h), where h is the spatial lag (see Eq. (17)). Orthogonal-
ity implies that the cross-covariances between distinct fields are zero:

Cr(h)=0 for r#7 94

Let Z;(x), withi = 1,..., N, denote the observed spatial random field associated with the
it" IM. Each Z;(x) is modelled as a linear combination of the shared latent fields:

Zi(x) =Y ai,Yy(x) 95)

where a; , are scalar coefficients representing the contribution of each latent field Y, (x)
to the observed field Z,(x). As a result of this construction, the observed fields, Z;(x), are
generally correlated, with their cross-covariances given by:

n

Cij(h) =" aira; Cr(h) (96)

r=1

This equation shows that the covariance between any two observed variables is a weighted
sum of the covariances of the shared latent fields. This enables shared spatial structures to be
embedded across multiple observed variables, facilitating multivariate modelling.
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To incorporate multiple spatial scales, the standard LMC formulation is extended by
associating each latent field with a specific scale /. This leads to a multi-scale version of the
LMC, where each observed variable {Z,(x)} is modelled as a linear combination of latent
fields Y!(z), each indexed by its scale [ and component r (Loth and Baker 2013):

Zzayl Vi=1,...,N 97)

=0 r=1

where each Y,!(z) is a latent random field at spatial scale [ and component 7, a! . is the coef-
ficient connecting the latent process to the observed variable Z;, n; is the number of latent
components at scale [, and L is the total number of scales. Each latent field is assumed to be
second-order stationary with zero mean and covariance that satisfies:

E[Y,(z)] =0,
AY(R), if r=r'andl=1 (98)

Contr) ¥ o+ ) = {70 BT

This ensures that latent fields are uncorrelated across both component and spatial scales.
Analogous to Eq. (96), the multi-scale formulation leads to a decomposition of the semivar-
iogram matrix I'(h), capturing all semivariograms and cross-semivariograms between the
observed variables:

L

L(h) =Y BY'(h) (99)

=0

where each 7!(h) is an admissible semivariogram function corresponding to the spatial
structure /, and can be modelled using parametric forms such as exponential, Gaussian,
spherical, or nugget models (see Eqs. (21)-(24)). Each term B’ is a positive definite co-
regionalisation matrix, constructed from the coefficients aéﬂ,, quantifying how much each
structure contributes to the cross-variability of the observed variables. In the case of two
IMs, the B! matrix becomes:

ny l 2 ny l l
Bl — Zr 1(Cl1 r) Z'rzl al,'r’a’2,r 100
S b ak S (al, ) (100)

Thus, the multi-scale LMC provides a flexible framework for modelling multivariate spatial
data through a shared set of basic structures, each representing a spatial process operating at
a specific scale (Journel and Huijbregts 1979). Loth and Baker (2013) and Wang and Wengqi
(2013), used two exponential functions as v (h), with two different ranges b; and b, as basic
models, therefore the cross-semivariogram matrix from Eq. (99) was described as:

['(h) = {1 — exp ( zjh)] + B2 {1 — exp < b?;h>] (101)

and then the covariance matrix becomes:
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O(h) = [lim r(h)} —T(h)

1
= Blexp 7% + B%exp 7%
bl b2

The total covariance matrix, ¥, in Eq. (93) is guaranteed to be positive semi-definite regard-
less of the number of sites considered, if the co-regionalisation matrices B’ are all positive
semi-definite (Gooverts 1997).

Loth and Baker (2013) implemented the LMC to simulate cross-spatial correlation in
spectral acceleration, Sa(7"), at nine different periods, ranging from 0.01 to 10seconds,
considering three co-regionalisation matrices, B', B2, and B3, obtained using Goulard and
Voltz (1992) algorithm, accounting for three components: a short-range structure (20km)
and long-range structure (70km) and the nugget effect, respectively. The model can be
expressed as:

—3h —3h
_pl —on 2 —on 3
R(h)=B exp( 20 )JrB exp< 0 >+B Ch=0 (103)

where (,—¢ is 1 when h = 0, and 0 otherwise.

Another study to apply the LMC methodology was Wang and Wenqi (2013) to several
IMs, such as PGA, PGV, Ia, and Sa(T'). Their model for Sa(7T') differs significantly from
the previous model because it uses data from eleven past earthquakes and not seven, incor-
porates the impact of site conditions and does not use the same correlation ranges of 0 km,
20km, and 70km for the nugget effect, short and long-range, respectively. Instead, it uses a
short range of 10km and omits the nugget effect. Additionally, this study employs the GMM
by Campbell and Bozorgnia (2008), in contrast to the one by Boore and Atkinson (2008)
used by Loth and Baker (2013). The spatial correlation model was developed for the same
nine periods as in the previous study and is given by:

—3h —3h
R(h) = P'exp (10> + P?exp (70) (104)

For a regionally dependent model, incorporating site conditions, the equation becomes:
—3h —3h
Rl Rus) =P () + P e (S5 )

Ry -3h -3h
K _Ys30 [ _
oo (52 [0 (55) o0 (55

Here, P! and P? are co-regionalisation matrices derived from standardising the matrix
B!, while P3%, P2%, and Kga are co-regionalisation matrices that account for regional
site conditions, representing short-range, long-range, and the influence rate of regional site
conditions, respectively.

(105)
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5.2.2 Principal component analysis

The LMC method made it possible to build accurate multivariate semivariogram matrices
for IMs, enabling the simultaneous calculation of correlation coefficients for Sa(T") across
various periods and locations, as well as the fitting of cross-covariances. However, the chal-
lenge of maintaining positive definiteness in matrices as the number of IMs and the number
of n locations increase becomes computationally demanding. Addressing this limitation,
Markhvida et al. (2018) proposed a framework using principal component analysis (PCA)
(Jackson 1991) with geostatistical methods (i.e., semivariograms), providing an efficient
solution for co-simulating spatially correlated spectral accelerations across multiple peri-
ods in regional seismic analyses. The variables of interest (i.e., the IM residuals computed
in Sect. 2.3) are essentially linearly transformed to an orthogonal basis via PCA, which
produces principal components-uncorrelated projections onto the new basis. Each of these
principal components can be thought of as capturing the main modes of spatial variation in
the data, which are much easier to analyse compared to the original multi-dimensional data.

With respect to orthogonality with the preceding component, the variance of the first
principal component is the largest, followed by the second principal component, which has
the second largest variance, and so on. Egs. (106), and (107) define that linear transforma-
tion, where P is the orthogonal linear transformation matrix with the principal component
coefficients (i.e., eigenvectors of the covariance matrix), Z is the matrix with the original
data (i.e., normalised residuals from several IMs (Zrar,,¢ = 1,...,N) and from several
locations (z; to xpr)), and Y is the final matrix with the transformed uncorrelated variables
(i.e., residuals in the principal component space).

PZ-Y (106)
P1,IM,  t PLIMy Zim, (@) -+ Ziw (@) yi(z) - wyi(zm)
: - : : - : = : : (107)
NIM, PNIMy] [ Zivy (1) o Zivy(zwm) yn(z1) - yn(zm)

On the other hand, knowing that P is an orthogonal matrix, 2 can be derived from Y in the
following way:

Z=pP Y =Py (108)

Because principal components are uncorrelated, the simple Eq. (19) can be used to calcu-
late the semivariogram for each component independently, avoiding the need for cross-
semivariograms. Markhvida et al. (2018) proposed a simplified model in which only five
principal components were used, since they were sufficient to explain at least 95% of the
total variance. In this study, Eq. (109) was presented as the best representation of empirical
semivariograms using PCA, capturing three types of behaviours:

—-3h —3h
’Yk(h) = COk(Inuggect) + C1k (1 — €Xp <>> + cog (1 — €xXp <)) (109)
a1k a2k
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where the first term denotes the nugget effect, where I,y ggect = 0if h = 0 and Iyyggect = 0
otherwise. The other two terms represent the short-range and the long-range effects, respec-
tively, using two exponential functions; k represents the k*" principal component; and
Cok, C1k, C2k, 01k, and agy, are regression coefficients. Based on Egs. (109), and (106), the
cross-semivariogram previously described by Eq. (85) can be expressed as (Markhvida et
al. 2018):

N

s v, (R) = Cragy i, (0) = Crag, vy = Zpk,IMipk,IIVIj i (h) (110)
k=1

Several factors in the PCA-based analysis can influence the resulting spatial correlations.
Wenqi and Ning (2021) investigated this by varying the number of earthquakes, the number
of ground motions, the set of IMs considered, and the number of principal components
retained. Their results show that the spatial correlation of spectral acceleration at different
periods, as well as C AV, decreases with increasing period. A similar decreasing trend was
observed for PG A and Ia. In contrast, significant duration (Dss575 and Dgs95) exhibited
very low and generally negative spatial correlation with most IMs. Furthermore, recognis-
ing the gap in models for next-generation IMs, Monteiro et al. (2026) have also developed
a cross-spatial model using PCA.

5.2.3 Latent dimension method

Although previous studies have examined the multivariate correlation of within-event resid-
uals in earthquake IMs, they have all assumed isotropy in these residuals - an assumption
that does not always hold (Garakaninezhad et al. 2017). To address this limitation, Abbasne-
jadfard et al. (2020) presented a new method that considers anisotropy in spatial correlation
of multivariate random fields using the latent dimension latent dimensions (LD) method
initially proposed by Genton and Kleiber (2015). This methodology shows how important it
is to address anisotropic and non-stationary correlations since conventional isotropic mod-
els tend to unrealistic loss estimations and inaccurate resilience assessment (Abbasnejadfard
et al. 2021). LD is an efficient approach to construct valid non-separable cross-covariance
functions and can be applied to anisotropic multivariate random fields. The key idea is to
consider k latent dimensions to represent an n-dimensional multivariate random field as a
univariate random field in a space n + k dimensions Genton and Kleiber (2015).

6 Critical discussion

Three main categories of ground motion correlation modelling were examined in this
review, encompassing non-spatial, spatial (same-IM), and spatial (cross-IM) correlations.
Comparative analyses were conducted to highlight methodological differences, underlying
assumptions, and their implications. The following subsections reflect on these with some
critical discussion on some of the benefits, drawbacks and current limitations. A recurring
limitation across published correlation models concerns the treatment of uncertainty in the
estimated correlation range parameters. Substantial variability in reported range values is
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evident across datasets, regions, and modelling approaches, as illustrated by the comparison
plots (Figs. 13—14). This variability may be interpreted as reflecting aleatory uncertainty
associated with the spatial variability of ground motion residuals, yet most studies rely on
single point estimates without explicitly characterising this uncertainty, although studies
like Heresi and Miranda (2019) have addressed it. In contrast, differences among published
models are more appropriately viewed as epistemic uncertainty arising from data selection,
modelling assumptions, and estimation strategies. While point estimates are often adequate
for immediate engineering applications, neglecting these distinct sources of uncertainty
may lead to overconfident inference when propagated into hazard and risk analyses. Incor-
porating uncertainty quantification strategies, such as event-wise bootstrap resampling or
unified likelihood-based estimation approaches (Ming et al. 2019), represents an important
direction for future developments and would enhance the robustness and transparency of
ground motion correlation modelling.

6.1 Non-spatial correlation modelling
Section (3) reviewed different correlation models developed in the last two decades and

Fig. 13 provides an illustrative comparison. Fig. 13(a) compares the correlation between
Sa(T) and significant duration (Dss75 and Dssgs5) for three models. Although based on
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Fig. 13 Non-spatial correlation and cross-correlation model comparison between (a) Sa(T) — Dss7s
and Sa(T) — Dssos, (b) Sa(T) — PGA and Sa(T) — PGV, (¢) Sa(T) — Sa(T) using analytical
formulations and (d) Sa(T") — Sa(T') using various methodologies
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Fig. 14 Spatial correlation models comparison for (a) Sa(0.3), (b) Sa(1.5), (¢) PGA, and (d) PGV

distinct methodologies, all yield broadly consistent trends, with negative correlations at
short periods and increasing positive correlations at longer periods. Aristeidou et al. (2024)
was observed to be more negatively correlated than the other two available models Bradley
(2011a), Baker and Bradley (2017), which was attributed to differences in filtering criteria,
with these latter studies including earthquakes of much lower magnitude than the Aristeidou
et al. (2024) study. Figure 13(b) compares correlations between Sa(7") and PGA or PGV
Despite differences in regional datasets (e.g., NGA-W1, NGA-W2 and European/Middle
Eastern), the models show consistent decay of psa, pc4 With period and stable psq (1), Pav
around 0.3s-1.0s. Given its cross-regional consistency and more recent calibration, the
(Baker and Bradley 2017) formulation remains the most broadly applicable. Figures 13(c)
and 13(d) show intra-period correlation of spectral acceleration at two periods T; and T}.
Although all analytical formulations capture the general decay of correlation with
increasing separation of periods, they differ in their mathematical structure and treatment of
horizontal components. Baker and Cornell (2006) explicitly separate horizontal and vertical
components and use trigonometric-logarithmic forms, which can produce sharper changes
in correlation for small differences in periods, reflecting a more abrupt decay (Eq. (30)-
(33)). In contrast, Baker and Jayaram (2008) (Eq. (34) and (35)) and Huang and Galasso
(2019) (Eq. (36)) adopt piecewise or smoothed logarithmic forms, which ensure continu-
ity and smoother variation across periods, particularly when geometric-mean rotations are
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used. Mathematically, these differences influence the stability and realism of multivariate
spectral acceleration simulations. Ultimately, the choice between these formulations repre-
sents two mathematically valid options, each with trade-offs between fidelity to component-
specific residuals and smoothness across periods.

The overall behaviour is similar across all studies, although Baker and Bradley (2017)
systematically predicts lower correlations for widely separated periods. Subsequent investi-
gations Aristeidou et al. (2024) attributed this to a broader magnitude range in the calibration
dataset, implying that such differences stem more from database filtering than fundamental
modelling discrepancies (e.g., GMM used). Thus, for applications requiring internally con-
sistent correlations, models constrained to a narrower magnitude range typically utilised in
strong shaking, such as Aristeidou et al. (2024), or regionally-specific models such as Akkar
et al. (2014), may be more suitable.

6.2 Intra-IM spatial correlation modelling

Intra-IM spatial correlation modelling was addressed in Section (4). Over the past two
decades, spatial correlation modelling has evolved from analytical and geostatistical for-
mulations toward non-ergodic GMMs, physics-based simulations and Bayesian inference
models that better capture spatial variability.

A brief note on the assumptions underlying the earlier analytical and geostatistical
approaches is helpful for interpreting the models compared below. Analytical formulations
typically rely on simplified structures, often implicitly assuming linear dependence, homo-
geneity, and stationarity of the underlying spatial field, which make them efficient and easy
to apply but limit their ability to represent more complex or scale-dependent behaviour.
Geostatistical tools such as semivariograms offer greater flexibility; however, they depend
on well-distributed data and on the suitability of the adopted variogram model, irregular
sampling, outliers, and non-stationarity trends can all bias the inferred correlation struc-
tures. These considerations are particularly relevant when contrasting newer models with
analytical or empirical formulations, as differences in underlying assumptions can translate
into noticeably different spatial decay patterns.

Figure 15 compares several representative models for Sa(7T), PGA, and PGV. For
Sa(T) (Figs. 15(a)-(b)), some models show a noticeably slower decay with distance, main-
taining higher correlations (0.20-0.35 at 20km for Sa(0.3s)) compared to older formula-
tions that approach zero. These results imply a broader spatial footprint of ground motion
correlation, which may be more realistic in regions with dense seismic instrumentation for
crustal earthquakes. However, they also risk overestimating spatial coherence if applied in
regions with stronger path variability. For PG A (Fig. 15(c)), the diversity among models
is more pronounced. Some approaches retain moderate correlation beyond 40 km, whereas
others predict a much faster decay. This variability mainly reflects the large differences
among existing PG A spatial correlation models, which results in lower confidence when
predicting the behaviour of this IM, as well as differences in data filtering and the definition
of inter-site distance, underscoring the sensitivity of PG A-based models and the need for
regional calibration rather than unquestioned adoption. Finally, the PGV comparison (Fig.
15(d)) reveals that models derived from different databases (e.g., Japanese and European
earthquakes) yield completely different correlation coefficients, highlighting the sensitivity
of PGV -based models and the importance of wisely selecting for the region under study.
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Fig. 15 Cross-spatial correlation comparison for Sa (7). (a) Comparison between Sa(0.1) — Sa(0.5);
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parison between Sa(1.5) — Sa(3.0)

This comparison between the different spatial correlation models highlights how method-
ological choices and input databases can significantly influence spatial correlation predic-
tions for various IMs between themselves. Given the variations observed in Fig. 15, careful
consideration must be given not only to the IM to adopt, but also to the selection of an
appropriate spatial correlation model, particularly in the context of seismic risk assessments.

Section 4.4 discussed the possibility of adopting non-ergodic GMMs for representing
spatial correlation. While there are clear advantages to giving further consideration to spe-
cific issues like path and site effects, non-ergodic GMMs are not without challenges. One
of the main limitations is their dependence on large, spatially dense datasets to reliably
constrain regionalised terms and spatial correlation structures, which may not be available.
However, the high-resolution datasets becoming increasingly available from PBS (Sect.
4.5) could potentially remedy this current obstacle. The increased complexity of non-ergo-
dic GMMs, particularly when modelling anisotropic and non-stationary behaviours, can
also make parameter estimation more difficult and computationally demanding. Moreover,
incorporating these models into PSHA frameworks remains non-trivial and is typically
more resource-intensive than using conventional ergodic models, compounded by the lack
of widely-used software platforms to implement them. As a result, their practical application
are currently limited.
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Similarly, in the case of PBS, Sect. 4.5 reviewed five different studies that each conveyed
the potential of PBS in characterising spatial correlations, which could also, in turn, be use-
ful for non-ergodic GMMs described above. Nevertheless, several challenges remain, such
as the high computational demand often required. In addition, the reliability of simulation
outputs is closely tied to the quality of input data, such as rupture models, subsurface veloc-
ity structures, and site conditions, which are not always well defined. A further limitation
is that the underlying models and numerical assumptions can lead to spatial coherence that
is stronger and smoother than typically observed in recorded earthquakes, for example,
due to simplified velocity structures, limited resolution, or uniform shallow-site representa-
tions. Another limitation lies in the validation of simulated spatial correlation patterns, as
dense arrays of ground motion records are often scarce, particularly for large events. Thus,
while PBS offers a robust framework for exploring complex spatial patterns, the resulting
correlation models are currently more suitable for assessing and validating the simulations
themselves, rather than for direct use in seismic risk assessments, and should be combined
with observational data when possible.

6.3 Inter-IM spatial correlation modelling

Section (5) addressed inter-IM spatial correlation modelling, which is probably the least
explored topic in correlation modelling, but in practical applications, probably the most
needed.

Understanding the assumptions that underpin existing inter-IM correlation models helps
contextualise the comparison presented below. Early Pearson- and Markov-type formulations
assume linear dependence, stationarity, and a homogeneous distance-decay structure, which
makes them straightforward to apply but limits their ability to represent period-dependent
or nonlinear interactions between IMs. More flexible approaches, such as cross-semivario-
grams fitted through the LMC, assume that all inter-IM relationships can be represented as
linear combinations of shared basic variogram structures; this requires the spatial field to be
jointly second-order stationary on how cross-dependence can vary with scale. PCA-based
models rely on decomposing inter-IM covariance into orthogonal modes, meaning that the
main directions of variability are assumed to be global and spatially invariant, which can be
sensitive to the number of retained components and to the conditioning of the underlying
covariance matrix. Latent-dimension formulations embed IMs in a lower-dimension space
defined by hidden variables, which provides greater flexibility but introduces identifiability
challenges and depends on the choice of regularisation and dimensionality. These differing
assumptions across modelling frameworks naturally lead to variations in predicted cross-
correlation levels, particularly at short distances and across spectral periods.

Among the models reviewed, it was seen that there are significant variations in how spa-
tial and period-dependent correlations are captured, as shown in Fig. 14. All models predict
a monotonic decrease in correlation with distance, but the decay rate and near-field behav-
iour (within 50km) depend strongly on the empirical dataset, regional tectonics, and model-
ling framework. Models with faster decay may underestimate spatial coherence, leading to
an underestimation of correlated losses in regions with closely spaced assets. Conversely,
models predicting higher short-distance correlations can overestimate spatial dependence,
inflating risk estimates if applied outside their calibration range. This near-field sensitiv-
ity is particularly important for portfolio-based loss assessments. Additionally, more recent
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spatial correlation models developed using PCA (Markhvida et al. 2018; Wenqi and Ning
2021; Monteiro et al. 2026) tend to have higher correlation coefficients, in contrast to the
Markov-type models (Goda and Hong 2008; Goda and Atkinson 2009) initially developed.

The spatial co-variation of different IMs reflects underlying physical processes that
simultaneously influence multiple IMs. Rupture characteristics such as fault geometry, slip
heterogeneity, and directivity generate coherent patterns across a range of frequencies, so
IMs of different periods often exhibit correlated variations along preferred directions. Path
effects, including attenuation, scattering, and regional crustal structure, impose systematic
spatial modifications that affect multiple IMs, though with period-dependent sensitivities.
Local site conditions, such as basin-effects, impedance contrasts, and soil nonlinearity, fur-
ther reinforce short-distance cross-IM correlations. These factors highlight that, beyond
inter-station distance, azimuth orientation, regional geology and shared source-path-site
effects can strongly influence cross-IM coherence and should be considered when develop-
ing or selecting correlation models.

In summary, higher or lower spatial correlation coefficients do not necessarily imply
better physical representation but may instead reflect artefacts of underlying GMM fitting,
variability, filtering criteria, and other aspects. While there is general agreement on the qual-
itative nature of spatial correlation decay, significant discrepancies exist among the specific
models. Analysts must pay attention to these, possibly referring to Fig. 12, when selecting
the most suitable model. Additionally, there remain opportunities to move beyond the cur-
rent predominant reliance on site-to-site distance as the only predictor of inter-site cor-
relation. Several studies have suggested incorporating additional explanatory parameters,
such as site condition contrasts, shared source effects, and regional path characteristics,
into correlation models, which could enhance their realism and predictive capacity (e.g.,
Bodenmann et al. 2023). Likewise, integrating site, path and source effects in a more con-
sistent and scalable manner within global models represents a promising direction for future
research.

7 Summary

This paper has reviewed over 45 distinct models available in the literature for characteris-
ing the correlation between different ground motion intensity measure (IM) types. These
encompass both intra-site (non-spatial) and inter-site (spatial) domains, in addition to same
IM and cross IM models. The approaches fit Pearson correlation coefficients to observed
data using available ground motion databases and characterise the correlation models via
analytical functions or other geostatistical techniques, such as semivariograms, depend-
ing on the quantity. Fitting methods included the linear model of coregionalisation, and
dimensionality reduction approaches like principal component analysis. Other strategies to
quantify ground motion correlations both spatially and non-spatially include physics-based
simulations and non-ergodic ground motion models. This wide array of modelling tech-
niques, along with the different ground motion datasets used for calibration and validation,
highlights the plethora of options available to analysts when performing seismic hazard and
risk assessments.

The review provided here aimed to give an overview of the state-of-the-art, provide a
critical comparison between models and serve as a valuable resource for future research-
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ers and practitioners aiming to select appropriate models for both spatial and non-spatial
correlation of IMs. It emphasised the importance of aligning model selection with regional
characteristics, the nature of the IMs under consideration, the available ground motion data-
base, and the specific engineering or risk assessment applications. Furthermore, an online
repository of these models has been created and shared on GitHub, where analysts can
browse and evaluate them, also contributing to their expansion with future implementations.

Special emphasis was made to scrutinise correlation models available for so-called next
generation IMs, whether they were direct models, indirect calculations, or yet to be estab-
lished. This was because improvements have been made in seismic vulnerability modelling
with increasing emphasis on more sophisticated IMs, such as F'IV'3 and Saqq,g(T), that
better characterise structural response of the built environment, helping the development
of more accurate vulnerability and fragility models. However, correlation modelling on the
seismic hazard side has not kept pace with this evolution. In particular, it was found that
there is a general lack of well-established models to quantify spatial and cross-spatial cor-
relation involving these newer IMs. Recent work by Monteiro et al. (2026) has begun to
address this, presenting a cross-spatial model for several next-generation IMs and interac-
tions with traditional ones. This gap is particularly relevant in the context of regional risk
assessment (e.g., Heresi and Miranda 2023), where different IMs may be used for different
structure types or asset classes across a distributed portfolio. By addressing these gaps, the
correlation modelling of IMs can develop into more accurate, flexible, and operationally
useful models for both non-spatial and spatial correlation of ground motions, enabling more
accurate regional seismic assessments.
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