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ABSTRACT

A seismic intensity measure (IM) links the seismic hazard and the dynamic response of a structure subjected to ground shaking. The spectral acceleration at the first and
usually dominant vibration mode, Sa(T,), is a popular choice for building structures. However, the IM selection for bridges is non-trivial since they do not typically have a
single dominant mode. Even for ordinary bridges with a dominant mode, the behaviour can change significantly in each direction, but also the non-linear behaviour and
components’ response varies remarkably from bridge to bridge. This study examines the performance of a novel IM in this context: the nn™ percentile of all rotation angles
of the inelastic spectral displacement, 5di roionn- It Was compared with other conventional IMs used in regional bridge assessment. This evaluation was carried out within
the context of the seismic risk assessment of an ordinary bridge structure, which is a highway overcrossing located in California with two spans and a continuous
prestressed reinforced concrete box girder. A large ground motion set was selected from the NGA-West2 database, and incremental dynamic analysis was performed on
the structure to assess each IM’s efficiency. Also, different horizontal component definitions were examined in terms of their efficiency. From the results, it can be
concluded that 5d, roipnn performs very well compared to other IMs. It is also shown that this IM could be a good choice to relate the shaking intensity to the inelastic
response that a bridge structure is expected to undergo.

CASE STUDY DESCRIPTION, RECORDS & ANALYSIS METHOD
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