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ABSTRACT 

In recent years, regional seismic risk assessment has seen a growing interest as a tool for 
stakeholders to quantify the expected performance of infrastructure inventories, providing 
useful information for efficient resource allocation and an overall increase in resilience of 
the systems analyzed. However, despite this being a frontline topic of research, there are 
multiple setbacks on the application side that have prevented a well-established uniform 
approach to follow being formalised when an assessment of this type needs to be 
performed. Researchers and practitioners tasked with such an assignment can become 
overwhelmed by questions that have not been addressed so far, such as: How to efficiently 
account for the seismic hazard of a regionally distributed inventory? How much knowledge 
of the inventory is required to attain adequate results? What is the uncertainty in the final 
results that derive from the lack of complete knowledge of the inventory? How to consider 
indirect losses when network traffic information is unavailable? How to prioritize resource 
allocation within a bridge inventory?  

Within this thesis, these questions are tackled within an application setting, using a database 
of real bridges from the Italian road network that are located in synthetic case studies to 
represent real-life bridge networks. The overall objective is to quantify the impact on the 
overall results of typical and innovative decisions made for regional assessment purposes, 
as well as to provide recommendations on specific topics that will aid in the determination 
of guidelines for future projects. 

Initially, the hazard component is addressed by evaluating the intensity measure that should 
be used in regional seismic assessment of bridges, to efficiently and accurately account for 
the fragility of the assets. In terms of exposure, the uncertainty that derives from the lack 
of structural information when performing risk assessment of large bridge portfolios is 
quantified and explored. In terms of seismic vulnerability, specifically the losses that can be 
associated with the complete disruption of each bridge in the inventory, the calculation of 
indirect losses with a view to their use within prioritization schemes is addressed. Finally, 
recognizing the practical need for management agencies to define methodologies with 
which to optimize asset maintenance and to effectively utilise their limited resources, a 
prioritization methodology is defined and evaluated. Overall, the methodologies 
implemented and results obtained, represent a useful contribution towards the practical 
implementation of regional seismic risk assessment and prioritization of bridge inventories.  

Keywords: regional seismic risk, bridges, intensity measure, average spectral acceleration, ground motion 
record selection, network analysis, taxonomy-based assessment, machine learning
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1. INTRODUCTION 

1.1 RESEARCH MOTIVATION 

The motivation for the chosen line of research comes from the aknowledgemnt that, within  
regional seismic risk assessment of buildings and bridges, even though this type of large 
scale assessments have been performed successfully for several years, the practical 
implementation of its underlying concepts to real-life case studies can bring multiple 
challenges. These often force practitioners to make difficult decisions with little data that 
will have an unknown impact in the final results; something that is sometimes not accurately 
communicated to the stakeholders.  

While for the most part, regional seismic risk assessment is in general seen favourably as a 
tool for stakeholders to quantify the expected performance of their infrastructure 
inventories, several setbacks can arise on the application side that cloud the theoretical 
background of its concepts. This leads to confusion as to what are acceptable guidelines 
that can be followed when parts of the baseline information that is ideally required is 
unavailable, or when there are not sufficient resources to procure and process it. 
Furthermore, even though this topic is on the forefront of research efforts and many 
innovations are being made (e.g. the calculation of indirect losses and the prioritization of 
assets), no consensus currently exists on what an acceptable methodology would be to carry 
out these tasks. With this in mind, it was seen as an opportunity to use the vast information 
and knowledge acquired during the INFRA-NAT Project (www.infranat-eu.org), a 
European Union funded research project that dealt with the regional seismic risk of bridges 
in Italy, North Macedonia and Israel. The bridge data collected during this project was used 
to create synthetic case studies with fully-known information to mimic a real-life practical 
setting. Current and innovative risk assessment methodologies could then be carried out 
and used as a benchmark to evaluate the impact of some of the common decisions made 
during this type of project, thus determining recommendations and best practices for their 
development, while also identifying their limitations and, when possible, calculating their 
associated uncertainty.  

Overall, it is intended that the research efforts presented in this thesis will be useful to 
practitioners in the field of regional assessment of bridges, while also making significant 
research contributions that can help to push both the state-of-the-art and the standard-of-
practice in a positive direction.  
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1.2 SCOPE 

Considering the many topics within regional risk assessment of bridges, the work presented 
in this thesis aims to answer a set of specific research questions using available information 
and databases. Accordingly, the scope of this thesis can be summarized by the research 
questions posed, which have been separated in each of the primary components of risk: 
hazard, exposure and vulnerability. 

Within the hazard component, the research question was stated as: How to efficiently 
account for the seismic hazard of a regionally distributed inventory? For this part, 
even though there are many possible ways to address this question, focus was given to the 
evaluation of intensity measures (IM), specifically the use of the recently developed average 
spectral acceleration (AvgSa) and its comparison to the more traditional use of peak ground 
acceleration (PGA). State-of-the-art risk assessment requires the use of fragility functions, 
derived using non-linear time-history analysis with earthquake records that are compatible 
with the site hazard and characterized via an IM suitable for the structures to be analysed, 
which poses a challenge given the wide variety of structural characteristics found in bridge 
inventories. Given the lack of consensus on a suitable IM, regional studies are often 
performed using PGA, which, despite being recognized as a poor indicator of structural 
performance, remains a common denominator in earthquake response characterization. 
AvgSa has recently gained popularity as an alternative since it describes earthquake intensity 
over a range of pertinent periods of vibration, however, its suitability as an IM has not been 
demonstrated on real bridge inventories with a wide variety of structural characteristics. 

For the exposure component, two main questions were posed: How much knowledge of 
the inventory is required to attain adequate results? and what is the uncertainty in 
the final results that derives from the lack of complete knowledge of the inventory? 
In this case, these questions emerged from the lack of bridge structural information that 
analysts usually encounter when dealing with the regional assessment of bridge inventories. 
In most regions, the bridge inventory is composed of structures built over decades and 
detailed structural information of the existing configurations is difficult to obtain and can 
be expensive to survey. Most of the regional risk studies for bridges are done with 
incomplete exposure knowledge and usually rely on macro taxonomy-based approaches 
that average fragility information of assets with similar configurations. This leads to an 
unknown level of uncertainty in the results that is commonly not quantified or accurately 
communicated to the stakeholders. Accordingly, there is a need for a better understanding 
on how much uncertainty can be expected in results using such approaches, as well as for 
recommendations to those dealing with this type of assessment to define an appropriate 
required minimum knowledge of the inventory to obtain reasonable results. With this in 
mind, a study was conducted by creating a case study of 617 bridges with full information 
and systematically removing portions of the inventory to quantify uncertainty, thus deriving 
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recommendations for minimum exposure knowledge and the associated uncertainty of 
specific known percentages of the inventory. 

In terms of the vulnerability component: How to consider indirect losses when network 
traffic information is unavailable? This question derives from the difficulty that currently 
exists in characterizing the losses experienced by users of a road network when the links 
provided by bridges become unavailable. These losses are recognised to be of greater 
relative importance than their direct counterpart, associated with the cost of the 
infrastructure, however, while the theoretical background for such calculations exists, the 
associated methodologies require a great amount of information on the overall network 
and the demands of the users, as well as a multi-disciplinarily skilled team, both of which 
can be difficult to procure. With this in mind, a review of currently used methodologies 
was made and used to develop two methodologies, one that includes most of the 
recommended components and allows the calculation of monetary losses; and a second 
simplified alternative that does not rely on traffic information and can be used to 
approximate the relative importance of bridges in a network in terms of indirect losses. 

Finally, more on the general risk management side: How to prioritize resource allocation 
within a bridge inventory? This question was addressed after the main findings, relating 
to the components of risk previously mentioned were obtained, and utilizes the majority 
of the results and insights attained throughout the research. The idea behind it is to 
determine an efficient way to perform resource prioritization when only specific key aspects 
of all elements in a bridge portfolio are available, a very real and common situation that 
bridge management authorities must face. When looking for decision variables to perform 
this prioritisation, seismic risk assessment metrics, such as average annual losses (AAL), are 
an appealing choice. However, obtaining this metric for a large bridge inventory is 
technically challenging and requires large amounts of information that are seldom available. 
This promotes the development of practical approaches that can predict the relative priority 
of assets within a portfolio, based on processing simple indicators with acceptable accuracy. 
For this question, the main elements that drive the seismic risk of a bridge portfolio in 
terms of AAL were identified, and their relative importance was used to calibrate a proposal 
for modification of a set of guidelines recently published by the Italian government.  

1.3 THESIS OUTLINE 

The main body of this thesis is formed around four peer-reviewed journal publications, 
one for each of the main key topics described in the previous section, and each one forming 
a chapter in the current thesis. Readers are advised to keep this in mind since, to aid in the 
standalone clarity of each of the main four chapters, some statements may seem repetitive 
throughout the entire document. Furthermore, with the same purpose of aiding in clarity 
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while avoiding repetitiveness, the literature review of the state-of-the-art for each topic was 
included in the introduction sections of their respective chapters.  

Chapter 1: Introduction, this chapter is made with the intention of clarifying the motivation 
and reasoning behind the topics and strategies selected for detailed study, while also briefly 
introducing an overview of the research performed. The detailed introduction of each of 
the research efforts that resulted in the journal publications, will be provided in its 
respective chapter to assist readers that are only focused on a single part of the study 
performed.    

Chapter 2: Case Study Portfolio, Fragility Assessment Methodology and Seismic Hazard 
Assessment presents a detailed account of the information, methodologies and hazard 
results used throughout the overall research. Initially, a main overview of the existing bridge 
database that was used to create the different synthetic case studies database and its 
structural characteristics is present, followed by a description of the process used to define 
the case studies and their resulting properties. A following subsection details the main 
methodology used in this thesis to perform numerical modelling of the bridges in the 
database, as well as the assumptions made to characterize the seismic performance and 
obtain fragility curves of each asset. Finally in this chapter, the seismic hazard present in 
each of the case study location selected was characterized, as well as a description of the 
ground motion selection process used to perform non-linear time-history analysis of the 
bridge inventory.  

Chapter 3: Hazard – Effect of Choice of Intensity Measure, relates to the comparison of 
average spectral acceleration with peak ground acceleration as intensity measures for 
regional seismic assessment of bridges. This is the first of the main four chapters that have 
a standalone structure, with individual introductions and its own set of conclusions. Its 
respective publication is entitled “Evaluation of intensity measure performance in the 
regional assessment of reinforced concrete bridge inventories”, published in the 
journal Structure and Infrastructure Engineering.  

Chapter 4: Exposure – Effect of Knowledge Level, represents the second of the main four 
chapters, and deals with study performed to characterize the uncertainty associated to the 
lack of exposure knowledge and the consequences of using traditional taxonomy-based 
fragility curves in comparison to individual and machine-learning predicted ones. Its 
respective publication is entitled “Exposure Knowledge Impact on Regional Seismic 
Risk Assessment of Bridge Portfolios”, and is under review for publication in the 
Bulletin of Earthquake Engineering. 

Chapter 5: Vulnerability – Simplified Indirect Loss Assessment, represents the third of the 
main four chapters, and deals with the definition of a detailed methodology and a simplified 
alternative to account for indirect losses in bridge portfolios with limited information. Its 
respective publication is entitled “Simplified Indirect Loss Characterization for the 
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Risk Assessment of Roadway Bridge Networks”, and is being revised for publication 
in the International Journal of Disaster Risk Reduction. 

Chapter 6: Risk Management – Prioritization Framework, represents the last of the main 
four chapters, and deals with the identification of the main parameters that drive the seismic 
losses of bridge portfolios, information used to calibrate a methodology that can help 
determine the relative urgency of intervention of assets in the inventory, based on limited 
parameters. Its respective publication is entitled “Seismic Risk Prioritisation Schemes 
for Reinforced Concrete Bridge Portfolios” and is under review for publication in the 
journal Structure and Infrastructure Engineering. 

Finally, Chapter 7: Overall Conclusions and Future Developments, serves as a summary of 
the main findings of the overall research, taking the key points and insights from each of 
the chapters in the thesis. Also, it presents recommendations for further developments that 
were identified in the topic.  





 

 

2.CASE STUDY PORTFOLIO, FRAGILITY ASSESSMENT 
METHODOLOGY AND SEISMIC HAZARD ANALYSIS 

2.1 CASE STUDY BRIDGE PORTFOLIO 

A bridge database comprising 308 bridges from the National Autonomous Roads 
Corporation ANAS (Azienda Nazionale Autonoma delle Strade) inventory, collected and 
managed by the Eucentre Foundation, was considered to develop two case studies: one in 
Campania with 165 assets and one in Salerno with 617 assets bootstrapped sampled from 
the 308-bridge database. These bridge assets form a part of the Italian road network and 
their geographic location is scattered along the primary highway grid of Italy, as shown in 
Figure 2.1.  

 

Figure 2.1. Location of 308 bridges in the database 
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The information considered in the database comprises a practically complete account of 
geometrical and structural properties of the bridges, allowing a detailed structural numerical 
model of each asset to be created. Each asset in the database is a reinforced concrete (RC) 
bridge with two or more spans, which is a predominant configuration in the Italian road 
network (Zelaschi, Monteiro, & Pinho, 2016). 

2.1.1 Main Characteristics 

Within the main class of RC bridges with two or more spans previously mentioned, the 
assets in the database are very heterogeneous in terms of dimensions and structural 
configurations. This is considered ideal since it makes the case studies built from the 
database more representative of real existing road networks that typically include a large 
range of bridge types.  

 

Figure 2.2. Main geometric characteristics of bridge database 

In terms of general dimensions, the overall number of spans ranges from 2 to 36, which 
translates to an overall bridge length range of 50m to 1250m. A large portion of the 
inventory is not straight in plan, as 35% of the assets have curved decks on at least one of 
the spans, which sometimes makes it difficult to use the typical definition of 
longitudinal/transverse directions. The height of piers ranges between 5m and 45m in the 
overall inventory and it is typical to observe large variation of the pier height within the 
same asset, leading sometimes to irregular dynamic configurations within straight bridges. 
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A more complete description of the distributions of these bridge properties is shown in 
Figure 2.2. In terms of static configuration, the vast majority of the case-study assets have 
spans that are simply supported upon the piers with thin elastomeric pads, and only a small 
percentage has continuous deck and bearings that can be either elastomeric or isolators. 

 

Figure 2.3. Distribution of main material properties of the bridge database (SC: Single Column, MC: 

Multiple Columns, W: Wall, Asl: Area of longitudinal steel, Ast: Area of transverse steel, Ac: gross 

area of the element) 

In terms of pier sections, the inventory includes multiple configurations, which sometimes 
change even within the same asset. For simplicity in classification, three main pier types 
were identified: single column (SC), wall (W) and multiple column (MW) configurations, 
the distribution of which is shown in Figure 2.3(a). It is important to note that the actual 
pier cross sections might be composed of circular sections, box sections, elliptical or many 
other kinds of geometrical configurations; however, it was considered appropriate to 
aggregate some of these into the pier types to avoid excessive sub-categorisation and having 
some pier categories with very few assets to analyse.  

The construction year was available for all assets, ranging between 1953 and 2000, with 
most of them built during the 1960s and 1970s, as shown in Figure 2.3 (d). As is common 
for regular Italian bridges of that period, none of them are expected to have been 
specifically designed to meet appropriate seismic requirements, especially considering that 
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the first national seismic regulation in Italy that addressed the entire national territory was 
instated in 2003 (Consiglio dei Ministri , 2003).  

In general, the reinforcement percentages in the piers, both in longitudinal (Asl/Ac) and 
transverse (Ast/Ac) directions, are low in comparison to current design standards and are 
quite similar across the different pier sections. This is atypical under current design 
practices, however, both the reinforcement ratios and the properties of the materials used 
for construction are in line with the age of construction of the inventory. Distributions for 
the mechanical properties of the materials are shown in Figure 2.3(e) and (f). 

2.1.2 Dynamic Characteristics 

2.1.2.1 Modal Analysis  

In terms of dynamic properties, a structural model was created for each asset to determine 
the modal periods in both orthogonal horizonal directions. Since, for the case of bridges, 
the first mode does not typically account for a significative percentage of the total modal 
mass (O'Reilly G. , 2021), an appropriate number of modes were evaluated for each asset 
to include 85% of the modal mass in each direction. The distributions for the first modal 
period (T1) and the modal period at which 85% of the modal mass is obtained (T85%) as 
shown in Figure 2.4. 

 

Figure 2.4. Results for modal structural periods of the entire inventory and definition of AvgSa range 

The intensity measure chosen to perform hazard and fragility calculations was average 
spectral acceleration (AvgSa), for which the collective results of T1 and T85% were used to 
define the period range. As shown in Figure 2.11, the selected range was 0.1 seconds to 1.7 
seconds, which was defined as per O’Reilly (2021) as 1.5 times the 84th percentile to account 
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for period elongation of the first mode and 0.5 times the 16th percentile to account for 
higher mode contributions of the T1 and T85% periods, respectively, for the entire inventory. 

2.1.2.2 Simplified Period Range Estimation 

Recognizing the difficulty in performing detailed numerical models of each asset in a 
portfolio, which would ultimately cause delays in a real risk assessment project since the 
period range for AvgSa would need to be defined for the hazard component analysis, a 
simplified period range estimation methodology was developed.  

Inspiration was taken from a previous similar exercise made by Zelaschi et al (2016) using 
a subset of the same case study database used in this thesis. In that previous study, the 
database was parametrized, and a statistical distribution was fitted to each parameter, then 
these were used to generate a synthetic population of bridges by randomly sampling from 
the distributions. The population created was entirely made of straight bridges with single 
circular columns and each was modelled to determine the first period of vibration in the 
transversal direction. Finally, the period results were analyzed and a multivariate regression 
was made to determine a simplified equation to approximate the first period of vibration 
based on the most correlated parameter, which was determined to be the ratio between the 
average pier height and the pier cross section diameter.  

For the case of this thesis, the decision was made to use the results of the modal analysis 
of the case study database without going through the parametrization and sampling 
process, and attempt to find simplified expressions to approximate T1 and T85% based on 
easily obtainable geometrical parameters that are not specific to the pier class of each asset, 
therefore excluding the geometry of the pier section from the candidate variables. The 
features for the regression were identified as: total length of the bridge, number of spans, 
maximum span length, average pier height and maximum pier height. These variables were 
preselected since they fulfil the requirements of being easily obtainable and general amongst 
all bridge classes. 

 

Figure 2.5. Relationship between T1 and candidate variables  
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Initially for the first period estimation, the candidate variables were analyzed by searching 
for individual trends and correlations with the calculated values of T1. Such an analysis can 
be seen in Figure 2.5, where the Pearson correlation coefficient (PCC) is indicated as a 
measure of linear correlation between each variable and the target T1. It can be seen that 
the features that are most correlated are the ones relating to the height of the piers, which 
is in line with the findings of Zelaschi et al al (2016).  

Multiple options considering a multivariate regression were evaluated to produce a function 
to approximate T1, however, none produced a significant advantage in accuracy in 
comparison with a simple linear regression performed using the most correlated variable 
of the maximum pier height, which is what ultimately was used to derive Equation 2.1. 

~𝑇ଵ = 0.43 + 0.03 ⋅ 𝑀𝑎𝑥_𝑃𝑖𝑒𝑟_𝐻𝑒𝑖𝑔ℎ𝑡 (𝑚) Equation 2.1 

The use of this equation is not optimal as a way to determine the first period of individual 
assets, as evidenced by Figure 2.6(a), where the comparison of predicted and calculated 
values show a large overall dispersion and a R-squared coefficient on 0.65, which is 
relatively low. However, when used to calculate the upper limit of the AvgSa range, by 
taking the same rationale of 1.5 times the 84th percentile over the aggregate predicted results 
does lead to encouraging results, with an approximation of the upper limit that is only 5% 
lower than the limit calculated using the modal analysis results. 

  

(a) (b) 

Figure 2.6. Evaluation of Equation 2.1 to approximate T1: (a) Prediction of individual T1 results, (b) 

Histogram of T1 predictions and determination of AvgSa upper range limit  
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A similar exercise was carried out to derive an approximate function to estimate T85%, 
however the correlation analysis provided no apparent trends relating the candidate 
variables to the calculated ones as can be seen in Figure 2.7. This is attributed to the fact 
that the number of modes required to obtain such a significant percentage of the total 
modal mass in both orthogonal directions change significantly between all assets, 
depending on the size of the bridge and its structural configurations; therefore, the 
estimation of this attribute might be a far more complicated problem, which would require 
the addition of extra variables that ultimately would defeat the purpose of the simplified 
estimation exercise. However, as shown in Figure 2.8, in general it appears that the 
consideration of enough modes to obtain the 85% mass target will ultimately lead to the 
calculation of very short periods in comparison to their T1 counterparts. This in addition 
to the rationale of using 0.5 times the 16th percentile over the aggregate T85% results, will 
most likely lead to estimates of the lower limit for the AvgSa range that vary between 0.1 
and 0.2s, which would make the use of 0.1 seconds a conservative generalization that could 
be made for portfolios of bridges with similar characteristics as the one used herein. 

 

Figure 2.7. Relationship between T85% and candidate variables (PCC: Pearson Correlation 

Coefficient) 

   

 

Figure 2.8. Histogram of T85% structural period of case study portfolio  
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2.1.3 Case Study 1: Campania 

A reduced sample of 163 assets from the main 308 asset database was used to perform the 
research related to exploring suitable intensity measures as stated previously. This decision 
to reduce the dataset for the exporation of this aspect of the hazard component was made 
to minimize the computational burden required to run the NLTHA with multiple intensity 
measure candidates.  

Differences in the number of spans and pier types were used to define six bridge taxonomy 
branches, listed in Table 2.1. It is important to note that the taxonomy distribution of the 
bridges in the inventory is not uniform, i.e. some taxonomy branches include fewer assets 
than others, as shown in Figure 2.9(a). This must be considered when comparing 
taxonomy-based results, but it is to be expected given that the data represents a real existing 
inventory of bridges. Furthermore, the decision of dividing the bridges based on the 
number of spans in two categories, divided at the five-span threshold, could be considered 
somewhat ambiguous; however, it was determined in this way to allow for a similar amount 
of assets in both sides of the main taxonomy break, as seen in Figure 2.9(b). 

 

Figure 2.9. Distribution of general and geometrical properties of the reduced 163 bridge database 

selected for Case Study 1 
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Table 2.1. Definition of taxonomy branches for Case Study 1 based on key structural parameters 

Material 
Static 

Scheme 
Spans Pier Type Taxonomy Branch 

Reinforced 
Concrete 

Simply 
Supported 

2 to 4 
Multiple Column RC-SS-2/4-MC 

Wall RC-SS-2/4-W 
Single Column RC-SS-2/4-SC 

Above 5 
Multiple Column RC-SS-5+-MC 

Wall RC-SS-5+-W 
Single Column RC-SS-5+-SC 

 

 

Figure 2.10. Distribution of main material properties of the reduced 163 bridge database selected for 

Case Study 1 

Further detailed information about the distribution of general geometric and material 
properties of the bridges in the database can be seen in Figure 2.9 and Figure 2.10. 
Divisions of reinforcement ratios are included through the differentiation between pier 
types. 
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Even though the real location of each bridge in the database is known, for this case study, 
they will all be treated as if subjected to the same seismic demands corresponding to a 
specific site hazard in specific location in the Campania region. This is another 
simplification that has been made to reduce the extensive NLTHA burden, described in 
the following sections, and to evaluate all assets under the same ground motion set. In 
actual applications, the procedure could be repeated for the different asset sites or a more 
hybrid means of selecting the ground motions to consider the seismicity of multiple sites 
could be used (Kohrangi et al., 2017).  

Since case study 1 is a subsample from the original database, the modal analysis of the assets 
chosen, as well as the aggregate analysis of the results, was repeated to define an AvgSa 
period range that was appropriate for the reduced asset sample. In this case, the modal 
analysis was carried out to determine the first three structural periods of each bridge. The 
results from this modal analysis are shown in Figure 2.11(a), classified by taxonomy branch 
where the height of each bar represents the median period and the black lines the 95% 
confidence intervals of the data for each case to provide a measure of the period variability 
within the same group. It can be seen that the taxonomy branches that include more spans 
present higher overall medians and variations in all periods than their respective 
counterparts with fewer spans, an intuitive trend since larger bridges are expected to have 
longer oscillation periods in the transverse direction. Moreover, there is more dispersion in 
the bridge length for the taxonomy branch with more spans.  

The aggregated results of the entire inventory are then used to determine an appropriate 
range of periods for the AvgSa IM record selection. While a study (Eads et al., 2015) has 
been made to determine the correct range of periods to use in AvgSa to reduce dispersion 
of the results, it dealt with the case of single buildings and therefore the recommendations 
are made in terms of the fundamental period (T1) of the structure.  

In the present case study, the lower limit was defined by 0.5 T3,median and the higher limit as 
1.5 T1,median, the intention being to use a lower bound that can include higher mode 
contributions and a higher bound that can account for period elongation in the non-linear 
range, for the majority of the case study bridges. This rule led to the selection of a range 
between 0.2 and 1.0 seconds was chosen as shown in Figure 2.11(b) for the definition of 
the AvgSa record selection, which is considered adequate since it contains most of the 
period results for the assets in the database.  
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(a) (b) 

Figure 2.11. Results of first three structural periods obtained from modal analysis of case study 1 

assets: (a) Divided by taxonomy branch, (b) definition of AvgSa period range for case study 1 

Readers are advised to note that the decisions made to define the AvgSa range for case 
study 1 are different that the ones previously described for the entire database. Before, the 
modal analysis was carried out considering enough modes per model until 85% of the 
cummulative mass was achieved, then the period range was defined by accounting for the 
collective results of T1 and T85%, scaling them to account for period elongation and higher 
mode contributions as discussed previously.  This procedure is preferred here and 
considered more representative of the overall period range that should be considered when 
using AvgSa on bridge portfolios. This, however, was not applied to case study 1 since the 
research related to this case study was performed chronologically much before the rest of 
the scope for this thesis was defined; therefore, at the time this portion of the research was 
being conducted, the decision to include only the first three structural periods and defining 
a range that would confortably contain the majority of the results was considered sufficient.    

2.1.4 Case Study 2: Salerno 

As shown in Figure 2.1, the bridges in the ANAS database are scattered geographically all 
over the Italian territory and not directly connected, therefore, their real location is not 
ideal to define a complete case study, since the consideration of the collective and individual 
role of each asset in the road network would be an unfeasible exercise. In contrast to the 
decisions made to define Case Study 1, a secondary case study was defined for the 
remainder of the research that has the adequate characteristics to account for connectivity 
and road network effects in the occurrence of a bridge collapse. 

Ideally, if a case study of bridges closely connected within the same territory were available, 
it could be explored and fully analysed to represent a benchmark with which to evaluate 
the performance of simplified prioritisation frameworks. For this reason, and taking 
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advantage of the fact that even in locations with different seismic hazard demands, bridge 
design practices did not vary considerably among the Italian territory for the construction 
period of the bridges in the database (Borzi, et al., 2015), a semi-synthetic case study was 
created. To do so, the road network of a region for which the location of bridges and road 
properties was known was taken, with a bridge from the 308 asset database being randomly 
sampled and assigned to each location. 

Table 2.2. Definition of taxonomy branches for Case Study 2 based on key structural parameters 

Material Spans Pier Type Taxonomy Branch 

Reinforced 
Concrete 

2 to 4 
Single Column  RC-SC-2to4 

Multiple Column RC-MC-2to4 
Wall RC-W-2to4 

5 to 8 
Single Column  RC-SC-5to8 

Multiple Column RC-MC-5to8 
Wall RC-W-5to8 

9 to 36 
Single Column  RC-SC-9to36 

Multiple Column RC-MC-9to36 
Wall RC-W-9to36 

 

 

 

(a) (b) 

Figure 2.12. Definition of case study 2: (a) Taxonomy of bridges assigned to the locations of bridges 

in the Salerno road network, (b) Number of assets per taxonomy branch present in case study 2 
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The Salerno province was selected for having a transportation network that relies heavily 
on the vehicular road system, a relatively low number of bridges (thus reducing the 
sampling process) and a varying seismicity level. Information about the road network of 
Salerno was taken from the OpenStreetMap database (OpenStreetMap contributors, 2020), 
which comprises all roads within the highway, primary and secondary systems, including a 
total of 617 bridges. The 308 bridges in the database were thus located randomly within 
the locations of bridges in the Salerno network using a sampling with replacement scheme. 
Once the final distribution of assets in the case study was defined and, based on the 
differences in the number of spans and pier types, the six bridge taxonomy branches listed 
in Table 2.2 were defined. The locations of the assets based on their respective taxonomy 
branch are shown in Figure 2.12. The period range of 0.1 to 1.7 seconds defined previously 
for the AvgSa consideration of the bridge database was maintained for case study 2 since 
the all the assets in the database were used for the definition of this case study.  

2.2 SEISMIC VULNERABILITY ASSESSMENT METHODOLOGY 

In this section, the overall methodology, tools and assumptions used to determine the 
fragility curves of each asset in the case studies will be presented. In general, the 
methodology relies on NLTHA performed to numerical models created for each bridge, 
using the ground motion catalogue selected for each case study. Only the detailed account 
of the methodology will be discussed in this chapter, the associated fragility results obtained 
will be presented in the following chapters, as they vary for each case study. 

2.2.1 Bridge Numerical Modelling Framework 

In order to efficiently implement a numerical modelling framework to generate, analyse 
and process the great amount of bridge information present in the database, a state-of-the-
art tool developed by the Eucentre Foundation called BRI.T.N.E.Y (BRIdge auTomatic 
Nonlinear analysis based Earthquake fragilitY) (Borzi, et al., 2015) was used. The tool 
creates finite element (FE) models for carrying out NLTHA with OpenSees (McKenna, 
2011) and processes the results to characterise the structural response of each bridge.  

The model elements are either frame elements, elastic for the deck and BeamWithHinges 
(Scott & Fenves, 2006) for the pier segments and the transverse beams, respectively, or 
zeroLength elements for deck connections and twoNodeLink elements for bearing devices 
within super- to sub-structure connections. Nonlinearity is modelled within both frame and 
zeroLength elements. For this purpose, in the beamWithHinges elements the cross-section is 
discretised into fibres. RigidLink elements are also used to model connection dimensions.  
Uniaxial constitutive models employed for the fibre section of inelastic elements are the 
Scott-Kent-Park concrete model (Kent & Park, 1971) (Concrete01 in OpenSees) and the 
bilinear steel model (Steel01 in OpenSees). Values for the material model parameters are 
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established for each of them, based on a sample taken from the structural property 
distributions created for each taxonomy branch.  

 

 

Figure 2.13. Example of finite element model created using BRITNEY with the upper plot showing 

a simple rendering of the bridge system and the lower plot showing its discretisation within the 

numerical model. Adapted from Borzi et al (2015) 

 

For the bearing supports and connections between the deck, piers and abutments, available 
force-deformation laws in OpenSees (e.g. Elastomeric, FlatSlider, FrictionPendulum) cover the 
full spectrum of devices, both traditional and modern, typically found in the bridge stocks 
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of Italy. The platform also accounts for simple friction support between two surfaces 
simply supported, as well as monolithic connections. 

Even though the tool does allow for foundations and abutments to be explicitly modelled, 
the lack of the necessary data on the soil system did not allow exploring these aspects in 
this study. However, this was not considered a major issue for the purpose of the risk 
assessment of the bridge portfolios since most design practices require that the foundations 
be capacity-protected which typically leads to significant conservatism in the design of 
bridge foundations (Chen & Duan, 2014). Furthermore, the tool allows for a great flexibility 
in geometrical definitions so as to model bridges with complex layouts, such as having 
curvature, multiple decks sharing piers, Gerber joints, etc. An example of the FE models 
created by the tool for a bridge from the case study portfolio is shown in Figure 2.13. 

2.2.2  Damage Criterion and Limit States 

Consistently with the BRITNEY analysis tool (Borzi, et al., 2015) that was used to model 
and characterise the structural performance of the bridges in the database, two limit states 
were used for the evaluation of the performance of the assets: a) damage limit state, and b) 
collapse limit state. In this tool, structural deterioration interactions between elements 
leading to collapse are not specifically accounted for in the models (i.e. elements will deform 
beyond the limit response thresholds). Instead of using explicit engineering demand 
parameters (EDP), a critical demand-to-capacity ratio per component (yi = di/ci) was used 
as damage measure to reflect how far each critical component is from the threshold of the 
limit state, which allows to later easily aggregate the state of its components into the global 
structural state (Jalayer et al., 2007). Local demand over capacity ratios were calculated for 
piers and bearings and, depending on the values of these ratios, limit states were later 
assigned in the post-processing stage.  

Piers can fail because either shear or deformation capacity, in terms of chord-rotation, has 
been exceeded. Two response thresholds were considered for chord rotation of the piers 
(yield θy and ultimate θu). The shear span LV was taken equal to the pier height L for single-
stem cantilever piers, or in the longitudinal direction, and L/2 in the transverse direction 
of multiple stem piers or piers with monolithic deck connections. Yield and ultimate 
curvatures were determined automatically from a bilinear fit of a section moment-curvature 
analysis to deal with general cross-section shapes and reinforcement layouts. In terms of 
shear failure, given the brittle nature of the phenomenon, only a single threshold was 
defined and associated with the collapse limit state, with the pier shear capacity calculated 
according to the NTC 2008 equations (M.I.T., 2008).  

Furthermore, to account for uncertainty in the capacity thresholds for pier components, 
they were modelled as lognormal random variables that are sampled every time an analysis 
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was conducted. The equations used in the definition of the pier thresholds for chord 
rotation and shear, as well as the logarithmic standard deviation used for the analyses, are 
presented in Table 2.3. Further detail on the choice of the different formulations can be 
found in Borzi et al (2015). 

Regarding the bearings, these can suffer from unseating failure, involving the deck and the 
supporting sub-structure. Bearings can fail due to excessive displacement demand, from 
simple falling of the deck from the bearing seat or due to the full loss of support from the 
pier head. The first condition detects a damage LS, while the second a collapse LS. The 
displacement capacity of the bearings was derived from the pier cap and bearing seats 
geometry, or directly defined by the user, and was considered as deterministically known. 

Table 2.3. Capacity thresholds for pier segments (h and db are the section height and longitudinal 

bar diameter, respectively) adapted from Borzi et al (2015) 

Limit State Mechanism Median 
Standard 

Deviation ln 

Damage Flexure 𝜃௬ =
𝜙௬𝐿௩

3
 0.3 

Collapse 

Flexure 
𝜃௨ =  𝜃௬ + ൫𝜙௨ − 𝜙௬൯𝐿 ൬1 −

𝐿

2𝐿௩
൰ 

with: 𝐿 = 0.1𝐿௩ + 0.17ℎ + 0.24 ൬
ௗ್

ඥ
൰ 

0.4 

Shear 

𝑉௨ = 𝑉 + 𝑉ே + 𝑉௦ 
 

with: 

𝑉 = 𝑘(𝜇)0.8𝐴ඥ𝑓 
𝑉௦ = 𝐴௦௧0.9 ℎ𝑓௬ 

𝑉ே = 𝑁
0.8ℎ

2𝐿௩

 
 

0.25 

𝜃௬ : Yield rotation 
𝜙௬: Yield curvature 
𝐿௩: Shear length  
𝜃௨: Ultimate rotation 
𝜙௨: Ultimate curvature 
𝐿: Plastic hinge length 

𝑉௨: Ultimate shear resistance 
𝑉 : Concrete shear resistance 
𝑉ே: Axial load contribution to shear resistance 
𝑉௦: Transverse steel shear resistance 
𝑘(𝜇௱): Ductility based reduction factor as per 
NTC2008  
Ac: Concrete shear resistance area 

N: Axial load 
fc: conc. compression strength 
fy: Steel yield strength 

 

To account for the bi-directional response under multi-component seismic input, the local 
D/C ratios, yi, were taken as the SRSS combination for the piers and bearings, respectively. 
For example, the local ratio for flexural deformation at the collapse LS was given in terms 
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of the responses and capacities in the longitudinal (L) and transverse (T) directions using 
Equation 2.2. 

𝑦_ఏೠ
=  ඨ൬

𝜃

𝜃௨
൰

ଶ

+ ൬
𝜃்

𝜃௨்
൰

ଶ

 Equation 2.2 

 

2.2.3 NLTHA and Fragility Curve definition 

Each bridge model was evaluated using NLTH analysis to each set of 30 bi-directional 
records, for each of the nine increasing intensity measure levels. Each individual record set 
provided a small sample of response corresponding to demand values D in each vulnerable 
component to be compared to its corresponding component capacity values C, sampled 
from their respective distributions. At each intensity level, the obtained sample of the 
component demand to capacity ratios y=D/C was used to obtain a global, structural system 
level D/C ratio, denoted by Y (Jalayer, Franchin, & Pinto, 2007). Making the assumption 
that bridge components are a part of a series system, where the weakest failure system leads 
to the overall damage or collapse of the global structure, the global D/C ratio for the j-th 
intensity level and k-th ground motion is given in terms of the n local D/C ratios by 
Equation 2.3. 

𝑌 = max൫𝑦ଵ , … , 𝑦൯  𝑗 = 1, … ,9 ;  𝑘 = 1, … ,30 Equation 2.3 
 
The 30 values of Y at each intensity level were used to fit a lognormal distribution to 
determine the probability of exceedance of the unit value of Y that marks the attainment 
of the performance level being evaluated, as shown in Figure 2.14. 

 

Figure 2.14. Sample values of the global D/C ratio Y being fitted with a lognormal distribution 

conditional on intensity level). Adapted from Borzi et al (2015) 
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These values of probability of exceedance form a piecewise fragility function however, 
since a continuous function is desired for reference and ease of implementation in the 
platform, the points are assumed to follow a cumulative lognormal distribution. A 
maximum likelihood estimation fitting algorithm (Baker, Efficient Analytical Fragility 
Function Fitting Using Dynamic Structural Analysis, 2015) was employed to obtain the 
exponent of the logarithmic mean 𝜇 and dispersion 𝛽 parameters that describe the 
fragility curve, as per Equation 2.4. A schematic example of such calculation can be seen 
in Figure 2.15. 

𝑝(𝐿𝑆 | 𝐼𝑀: 𝑥) = Φ ቌ
ln ቀ

𝑥
𝜇

ቁ

𝛽
ቍ Equation 2.4 

 

 

Figure 2.15. Fitting a continuous fragility function as a cumulative log-normal curve based on 

discrete probability of exceedance observations. Adapted from Borzi et al (2015) 

 

The process is repeated for each bridge model in a specific taxonomy and the results can 
be processed statistically to obtain a class fragility function. For this purpose, the class 
lognormal mean is represented by the average of all the means of the synthetic bridge 
models, as presented in Equation 2.5, while the overall dispersion is given by the square 
root of the sum of squares of the intra-bridge dispersion and the inter-bridge dispersion, 
as presented in Equation 2.6.  

𝑙𝑛 𝜇ೌೣ  =
1

𝑁
 𝑙𝑛 𝜇 

ே

ୀଵ

 
Equation 2.5 

 

𝛽ೌೣ
=  ට𝛽ೝೌ

ଶ + 𝛽ೝ

ଶ  

 
 

 
Equation 2.6 
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where: 

𝛽୪୬ଢ଼౪౨
=

1

𝑁
 𝛽

ே

ୀଵ

 

 

𝛽ೝ
= ඨ

∑ ൫𝑙𝑛 𝜇 − 𝑙𝑛 𝜇ೌೣ ൯
ଶே

ୀଵ

𝑁
 

 
 

Equation 2.7 
 
 
 
 

Equation 2.8 
 

 

2.3 SEISMIC HAZARD ASSESSMENT 

In this section, the main decisions made to conduct the seismic hazard assessment of each 
site of the case studies will be presented, along with the results obtained for some illustrative 
locations and return periods. For both cases, the overall methodology relies in the 
implementation of probabilistic seismic hazard analysis (PSHA) (Cornell, 1968) to obtain 
hazard curves, the use of disaggregation results (Bazzurro & Cornell, 1999) to determine 
the main sources that contribute to the seismic demands of the sites analysed, and the 
selection of ground motion records using a conditional spectrum approach (Lin, Haselton, 
& Baker, 2013).  

Some differences will be noticed in the hazard analysis of both case studies, readers are 
advised to keep in mind that this is mainly related to the chronological order in which the 
case studies were developed. The research related to case study 1 in Campania was 
performed chronologically much before the one related to the case study in Salerno, 
therefore, the latter will seem more detailed than the former.   

2.3.1 Case Study 1: Campania 

A site located in the northern part of the Italian Campania region was chosen to carry out 
the seismic hazard analysis required to select ground motion records required to run 
NLTHA of the assets included in case study 1. The OpenQuake engine (Silva, Crowley, 
Pagani, Monelli, & Pinho, 2014) was used to perform probabilistic seismic hazard analysis 
(PSHA) calculations using the SHARE source model (Woessner, et al., The 2013 European 
Seismic Hazard Model: key components and results, 2015) on the selected site. The 
resulting hazard curves for peak ground acceleration (PGA) and AvgSa are shown in Figure 
2.16.  
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(a) (b) 

Figure 2.16. Seismic Hazard Site used for Case Study 1: (a) Site location, (b) Hazard curves for PGA 

and AvgSa in the 0.2-1.0 secong range. 

A selection of 30 bi-directional earthquake records was performed for each of nine 
considered return periods (30, 50, 98, 224, 475, 975, 2475, 4975 and 9975 years) giving a 
total of 270 ground motions for each IM. The selection process was carried out using the 
haselREC tool (Zuccolo, O’Reilly, Poggi, & Monteiro, 2021), which follows a conditional 
spectrum (CS) approach (Lin, Haselton, & Baker, 2013) where a target response spectrum 
distribution (with mean and dispersion) is computed for each return period and intensity 
measure. For the case of AvgSa, the original CS procedure was extended in Kohrangi et al 
(2017) to define the target spectrum distribution in the AvgSa period range defined. Each 
of these results were used to screen a composite database made up by the PEER 
NGAWest2 database (Chiou, Darragh, Gregor, & Silva, 2008) and the Engineering-Strong 
Motion (ESM) database (Luzi, et al., 2016). In order to select and scale the records in a way 
that accurately accounts for their bi-directional characteristics, the RotD50 response 
spectrum (Boore, 2010) of each bi-directional earthquake recording was used to match 
compatible records with the target CS distribution selected for each return period–IM pair. 
This response spectrum comprises the median values of response spectra of the two 
horizontal components projected onto all nonredundant azimuths, both the PGA and 
AvgSa values of each record used was calculated in this space. 
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(a) (b) 

Figure 2.17. Record selection results for 475-year return period: (a) PGA, (b) AvgSa in the 0.2s – 1.0s 

period range. 

An example of the response spectra of a set of selected accelerograms for the 475-year 
return period can be seen in Figure 2.17 for both PGA and AvgSa. The 30 green lines are 
the RotD50 response spectra of selected ground motions while the red lines represent the 
target conditional spectrum (average and ±2 standard deviations). 

2.3.2 Case Study 2: Salerno 

The Salerno province, as previously described, was selected as the location for case study 
2, partly because it has a varied seismic hazard that ranges from low seismicity regions near 
the coastline, to high seismicity areas near the Southern Apennines Mountain range, which 
was the location of the Mw 6.9 Irpinia earthquake in 1980, for example. This wide range of 
seismicity represents an opportunity for this case study, as it allows possible differences in 
the response of bridges in different seismic demand areas to be investigated.  

In terms of hazard curves, same as for case study 1, the SHARE hazard model (Woessner, 
et al., 2015), implemented in the OpenQuake Engine (Silva, Crowley, Pagani, Monelli, & 
Pinho, 2014), was used to determine the probability of exceedance of different levels of 
AvgSa (in this case using the period range of 0.1s -1.7s) for an investigation period of 50 
years. The main difference for this case study in comparison to the previous one is that, 
instead of using the same hazard site for all assets, the PSHA was performed at the location 
of each bridge in the case study.  

In terms of ground motion record selection, the EzGM tool developed by Ozsarac et al. 
(2021) was used, which follows a conditional spectrum scheme (Lin, Haselton, & Baker, 
2013) using a modification that allows the conditioning of the spectra for AvgSa (Kohrangi, 
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Bazzurro, Vamvatsikos, & Spillatura, 2017). The implementation of the record selection 
methodology used requires results from a disaggregation analysis to determine the mean 
magnitude and distance that principally drive the seismic demands at each specific site. 
However, given the large number of bridge locations, and to minimise the computational 
burden of performing disaggregation at each location, all assets were assigned to four 
hazard zones and two soil classes (i.e., soft and stiff soil differentiated by a Vs,30 threshold 
of 360 m/s) as illustrated in Figure 2.18. Following this, a complete hazard disaggregation 
analysis was carried out for the eight possible zone-soil combinations. For each 
combination, sets of 30 bidirectional ground motion records were selected from the NGA 
West-2 Strong-motion Database  (Ancheta, et al., 2014) for nine return periods ranging 
from 98 years to 9975 years. An example set of the selected ground motion records is 
illustrated in Figure 2.19. 

(a) (b) 

Figure 2.18. Seismic hazard of the case study 2 (Salerno): (a) Hazard zones and soil sites (PGA 

values for a return period of 475 years are shown for reference), (b) Hazard curves for each hazard 

zones (dashed lines are soft soil results). 
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(a) (b) 

Figure 2.19. Conditional Spectrum Record Selection for Case Study 2: (a) Disaggregation results for 

Site 1, (b) Example of record selection for Site 1, 475-year return period, stiff soil. 

 

2.4 CHAPTER SUMMARY 

In this chapter, a detailed account of the characteristics of the existing bridge database, as 
well as the procedure used to create realistic case studies and their resulting properties was 
presented. Furthermore, the main methodology used in this thesis to perform numerical 
modelling of the bridges in the database, as well as the assumptions made to characterize 
the seismic performance and obtain fragility curves of each asset was presented. Finally, 
the seismic hazard present in each of the case study location selected was characterized, as 
well as a description of the ground motion selection process used to perform non-linear 
time-history analysis of the bridge inventory. 

 





 

 

3. HAZARD: EFFECT OF CHOICE OF INTENSITY 
MEASURE 

3.1 INTRODUCTION 

State-of-the-art seismic risk assessment requires the use of fragility functions typically 
derived via non-linear time-history analysis (NLTHA). This is done using earthquake 
records that are both: a) compatible with the site hazard and, b) characterized via an 
intensity measure (IM) suitable for the structures to be analysed. The latter condition is 
typically achieved by performing the record selection procedure with an IM that minimises 
the dispersion in the observed structural behaviour. 

For the case of individual building structures, the use of the spectral acceleration at the 
fundamental period, Sa(T1), is a typical choice for IM that has proven to minimise the 
dispersion in the response of a structure to multiple ground motions with the same IM 
level. This option is based on the notion that the first mode response tends to govern the 
performance of most regular buildings with short to medium height. However, in the case 
of bridges or inventories with multiple classes of structures, no single period can be typically 
chosen to characterise the entire structural behaviour thus no clear answer exists on how 
to efficiently choose an IM.  

Multiple studies have been conducted to address this issue, specifically investigating the 
impact of the choice of the IM on the development of fragility curves for bridges. Earlier 
work by Padgett et al (2008) concluded that peak ground acceleration (PGA) is the optimal 
choice for portfolio analysis since it provides adequate results and does not require 
consideration of the dynamic characteristics of the inventory. More recent accounts 
(Monteiro, Zelaschi, Silva, & Pinho, 2017) have determined that some IMs such as peak 
ground velocity (PGV) and Fajfar index (Iv) show a better performance in comparison to 
PGA, however, they do not completely disqualify its use and recognize the advantages of 
its widespread availability and popularity amongst practitioners. 

Reaching a consensus on the choice for an optimal IM for analytical fragility calculations 
remains an open challenge (Silva, et al., 2019) and, therefore, recent regional studies have 
been many times performed in terms of PGA (Borzi, et al., 2015; Carozza, Jalayer, Miano, 
& Manfredi, 2017) or spectral acceleration at 1 second (Sa1s) as popularized by HAZUS 
(Porter K. , 2009), not because of their actually proven accuracy, but because of its 
convenience as IMs that are readily available in hazard calculations in most regional 
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contexts. More recently, average spectral acceleration (AvgSa) (Eads, Miranda, & Lignos, 
2015) has gained popularity as a promising alternative, given that it describes ground 
motion intensity in terms of the geometric mean of spectral demand over a range of 
pertinent periods of vibration. Some recent research has shown encouraging results for its 
use in portfolio assessment of structures (Kohrangi, Vamvatsikos, & Bazzurro, 2017) and 
specifically for bridges (O'Reilly & Monteiro, 2019), however, its claims as an efficient IM 
have not been yet verified on real inventories of bridges with a wide variety of structural 
characteristics. 

In this chapter, the sets of 270 bi-directional hazard-consistent records that were selected 
previously in Section 2.3.1 for PGA and AvgSa, are used to evaluate the response, through 
NLTHA, on the case study inventory of 163 existing bridges described in Section 2.1.3. In 
order to address the abovementioned gap related to the choice of a proper IM in bridge 
inventories, the results from the extensive analysis campaign were scrutinised using several 
performance metrics that evaluate the statistical and behavioural performance of the entire 
set from an individual and taxonomy-based perspective with to quantify the impact of the 
choice of IM in the results typically obtained in regional risk assessment of bridge 
inventories. Beyond the comparison between the use of the two aforementioned IMs (PGA 
and AvgSa) in bridge portfolio risk assessment, this current chapter explains in detail the 
application of a state-of-the-art methodology for regional seismic risk assessment of 
bridges and, furthermore, the analysis of the results obtained will permit to gain insights 
into some practical questions that may arise when performing regional analysis of bridges, 
such as the applicability of taxonomy-based fragility curves for the calculation of risk 
assessment results and the mechanisms that govern the exceedance of the types of bridges 
analysed.  

3.2 METHODOLOGY 

The adopted methodology for this chapter, shown schematically in Figure 3.1, consists of 
initially processing the case study bridges to create a series of numerical models as described 
in Section 2.2. As stated in Section 2.1.3, these models were be used to perform a 
preliminary analysis to determine the structural modal information used to define a 
representative period range for the computation of the AvgSa IM. This information is then 
combined with the seismic hazard analysis described in Section 2.3.1 for a specific site in 
Campania, taken as characteristic of the seismicity of the area where the bridge inventory 
was located. Both these results, concerning the definition of the period range of interest 
and the hazard conditions of the site, were used to perform a hazard-consistent record 
selection for both PGA and AvgSa in the selected period range, leading to a set of 30 bi-
directional earthquake records for return periods of 30, 50, 98, 224, 475, 975, 2475, 4995 
and 9975 years, hence, a total of 270 ground motion records for each IM as described in 
Section 2.3.1.  
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Figure 3.1. Methodology defined to evaluate the choice of IM on a bridge portfolio 

 

Table 3.1. Selected performance metrics to evaluate IM efficiency and result comparison 

Performance Metric Significance 

Fragility curve dispersion (βlnY) 

The dispersion parameter of the continuous fragility curves 
can be seen as an indicator of efficiency since lower values of 
βlnY imply a higher probability of reaching a LS for a given 
IM level.   

D/C dispersion (βY|IML) 

The dispersion in the demand over capacity ratios obtained 
for each return period represent a direct indicator of IM 
efficiency, the lower dispersion associated to an IM the 
smaller number of records is required to capture the 
behaviour  

Exceedance mechanism 

Though not a measure of IM efficiency, it was deemed 
interesting to investigate if there were differences between 
the underlying phenomena that cause the exceedance of a LS 
using records chosen for different IMs 

Probabilities of exceedance and 
direct losses 

Thorough comparisons of the mean annual probabilities of 
exceedance of each LS as well as the resulting average annual 
losses using both individual and taxonomy-based 
perspectives were made in order to evaluate the difference in 
the behaviour obtained by using different IMs  

 

These records are then used to perform NLTHA on each of the 163 bridge structural models to 

obtain demand over capacity ratios (Y = D/C) of key bridge components that are processed 

statistically for each return period to determine the exceedance probabilities of specific limit states. 

These results are then used to fit continuous fragility curves for each bridge in the inventory. The 
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information obtained from the analysis is later processed to evaluate the efficiency and overall 

differences resulting from each IM through multiple bridge performance metrics. The selected 

metrics and their significance in terms of efficiency are presented in  

Table 3.1 and will be explained in further detail in the following sections of the present 
chapter.  

Finally, in order to illustrate how the difference in results for both IMs could influence the 
estimates of road network interruption, a fictitious case study network is evaluated under a 
seismic event scenario to determine the number of bridges that could be tagged as 
inoperative. This output represents an additional indirect metric for the evaluation of the 
relative performance of the IMs. 

3.3 RESULTS 

3.3.1 Fragility Metrics 

Following the procedure described in Section 2.2, for each of the 163 case-study bridges, 
fragility curves for the damage and collapse limit states were defined as pairs of median 
(𝜇) and standard deviation (𝛽) that define a lognormal distribution described by 
Equation 2.4, for both PGA and AvgSa.  All resulting fragility curves, together with the 
calculated mean group fragility curves, are shown in Figure 3.2 for illustrative purposes 
alone since these mean curves include bridges from all taxonomy branches. Each individual 
curve was processed by grouping the results based on the taxonomy branch of each bridge 
and obtaining the taxonomy-based fragility curves described by the parameters shown in 
Table 3.2. 

Table 3.2. Taxonomy-based fragility curve results 

IM AvgSa (0.2s-1.0s) [g] PGA [g] 
LS Damage Collapse Damage Collapse 

Taxonomy μlnY βlnY μlnY βlnY μlnY βlnY μlnY βlnY 
2/4-MC 0.185 0.731 1.131 0.540 0.076 0.992 0.694 0.621 
2/4-SC 0.191 0.392 1.079 0.496 0.124 0.458 0.752 0.579 
2/4-W 0.207 0.340 0.769 0.453 0.119 0.522 0.549 0.590 
5+-MC 0.113 0.676 0.787 0.604 0.075 0.763 0.498 0.665 
5+-SC 0.127 0.507 0.618 0.497 0.048 0.946 0.428 0.629 
5+-W 0.122 0.539 0.847 0.672 0.049 0.960 0.582 0.740 
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(a) (b) 

 
(c) (d) 

Figure 3.2. Fragility curve results obtained from NLTHA campaign on all 163 assets in the database 

for: (a) Damage PGA, (b) Collapse PGA, (c) Damage AvgSa, (d) Collapse AvgSa. 

 

From these results, the value of dispersion (𝛽) of the fitted fragility curve can be inferred 
to be representative of the relative performance of fragility curves calculated with different 
IM choices since lower values of dispersion are indicative of more abrupt changes between 
limit states, leading to more certain predictions of performance when compared to curves 
with higher dispersion values. This is illustrated in Figure 3.3 where, for two curves with 
similar medians but different dispersions, it can be argued that the IM in curve A is a better 
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performer in comparison to the one of curve B. Considering these assumptions and 
comparing the aggregated results obtained from each asset in the database, shown in Figure 
3.4, it can be argued that the curves calculated using AvgSa as IM perform better in 
comparison to the curves calculated with PGA, as they present consistently lower 
dispersion values for both limit states. 

 
Figure 3.3. Schematic representation of influence of dispersion as metric of performance 

 

 
Figure 3.4. Fragility curve dispersion results for all assets, defined as metric to evaluate performance 

of IM choice 
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The dispersion results were further investigated to determine if the values were sensitive to 
the taxonomy branch of each asset; in other words, the results were disaggregated per 
taxonomy branch and limit state, as shown in Figure 3.5. In this case, it can be seen that 
there is no apparent trend in the dispersion in terms of taxonomy branch. However, it can 
also be seen in both plots that, in general, the median dispersion values remain lower when 
AvgSa is chosen as IM, when compared with their PGA counterparts. 

(a) (b) 
Figure 3.5. Median dispersion values obtained from the results of the entire database, represented in 

terms of: (a) Limit State and, (b) Taxonomy branch. 

 

3.3.2 Structural Behaviour Dispersion (βY|IML) 

Another useful metric to evaluate the efficiency of an IM to characterise structural 
behaviour is the variability observed in the structural demands caused by records 
representative of the same return period that have been selected and scaled to have the 
same IM level (record-to-record variability). It is argued that a low variability of structural 
demand under such conditions is indicative of higher efficiency since it would require fewer 
records per IM level to capture the resulting behaviour. 

As mentioned previously in Section 2.2.3 and illustrated in Figure 2.14, the demand over 
capacity ratios (Y=D/C) obtained from the NLTHA for each return period are fitted into 
a lognormal distribution that is used primarily to determine the probability of the structural 
demands exceeding a limit state threshold. Therefore, values of the median and dispersion 
per IM level are defined for each return period of which the dispersion value (𝛽|ூெ) is a 
direct indicator of the variability observed. 

These values were thus retrieved from the structural response database and plotted in terms 
of their corresponding return period, for both limit states and IMs evaluated. The results 
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obtained are shown in Figure 3.6, where the bold lines represent the median dispersions 
obtained from the entire inventory and the shaded areas represent the lower and upper 
quartiles observed per IML, included as a measure of variability. 

 
(a) (b) 

Figure 3.6. Dispersion of structural demand per IML obtained from the results of the entire 

database: (a) Damage Limit State, (b) Collapse Limit State. 

As it can be seen in Figure 3.6, the dispersion results for PGA and AvgSa show similar 
trends but with AvgSa always demonstrating lower median values for all return periods and 
both limit states considered, when compared with its PGA counterpart, leading to the 
preliminary conclusion that AvgSa is a more efficient choice for IM. 

3.3.3 Exceedance Mechanism 

As detailed previously in Section 2.2.2, the NLTHA platform takes into account multiple 
EDPs to determine the probability of exceedance of a specific limit state, with each EDP 
being used to trigger a limit state based on the exceedance of either flexure, shear or bearing 
displacement (unseating) capacity.  

For simplicity, the fragility curve calculation was made with an enveloping approach, 
described in Equation 2.3, using the highest D/C ratios obtained throughout the NLTHA 
campaign for each exceedance mechanism in each asset analysed. However, in order to 
investigate the mechanism that contributes the most to the fragility of each bridge typology, 
as well as to determine if the IM choice has any influence in such a mechanism, the 
structural behaviour database was reanalysed to determine the most recurring mechanism 
that governs the fragility of each asset in the inventory. 
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The results of this exercise are shown in Figure 3.7, divided by limit state and taxonomy 
branch. It can be seen that the exceedance of flexure capacity is the governing mechanism 
for the majority of assets in all taxonomy branches and that the choice of IM for record 
selection has very little impact in the overall governing mechanism. This preliminarily 
indicates that the governing mechanism depends mostly on the particular characteristics 
(e.g. geometrical layout, materials, structural system) of each asset rather than the employed 
IM. 

 
(a) (b) 

 
(c) (d) 

Figure 3.7. Structural mechanism that governs the exceedance of limit states separated by taxonomy 

branch for: (a) Damage AvgSa, (b) Damage PGA, (c) Collapse AvgSa (d) Collapse PGA. 

 



Andres Abarca Jimenez 

 

40 

3.3.4 Limit state Probabilities of Exceedance and Direct Losses 

3.3.4.1 Probability of Exceedance of Limit States 

In order to investigate the influence of the choice of IM in the probabilities of exceedance 
(POE) of the two limit states for different IM levels, the discrete results obtained from the 
NLTHA for the nine IM levels were associated with their respective return periods. This 
was to allow results from both PGA and AvgSa record sets to be plotted together and 
compared for each asset in the case study. The aggregated results of all bridges in the 
database can be seen in Figure 3.8, where the bold lines represent the median values of 
POE for each limit state and return period observed for the entire inventory, while the 
shaded areas represent the lower and upper quartiles included as a measure of the 
corresponding variability.   

(a) (b) 
Figure 3.8. Probability of exceedance versus return period comparison for: (a) Damage Limit State, 

(b) Collapse Limit State. 

It can be seen that the largest differences in probability of exceedance between both choices 
of IM are present in the lower return period range of the Damage LS, where the results 
obtained with the PGA selected records show a much higher median and uncertainty in 
the POE than its AvgSa counterpart. This trend is reduced for higher return periods as the 
Damage LS becomes exceeded by the entire set of records above a return period of 975 
years. In the case of the Collapse LS, as it is shown in Figure 3.8 (b), both IM choices lead 
to similar median results although, again, the PGA calculations yield a slightly higher POE 
for lower return periods than its AvgSa counterpart, a trend that is reversed for return 
periods above 2475 years.  
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Furthermore, by combining the POE results with the mean annual frequency of 
exceedance (MAFE) obtained during the hazard analysis for each IM level and integrating 
over the resulting curve, it is possible to obtain the annual probability of exceeding (APE) 
a specific limit state, as described schematically in Figure 3.9. This exercise was performed 
for each asset in the database and each IM choice for both limit states and the results are 
presented in Figure 3.10. 

 

Figure 3.9. Schematic representation of the calculation of the annual probability of exceedance of a 

specific limit state 

 

  
(a) (b) 

Figure 3.10. Annual probability of exceedance for each limit state and each IM choice: (a) 

Aggregated results for entire inventory, (b) Disaggregated results by taxonomy branch. 

 

As it can be seen in Figure 3.10 (a), when considering the entire inventory data, the median 
APE calculated with PGA as the IM was slightly higher for both limit states when 
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compared to AvgSa. This trend was maintained when disaggregating the results by 
taxonomy branch, as shown in Figure 3.10 (b), where it can also be seen that taxonomy 
branches representing bridges with more spans experience higher mean APE than their 
shorter counterparts with the same pier section types. This is considered an expected result 
since bridges with more elements are more likely to have any of them exceeding a specific 
limit state for an IM level.  

3.3.4.2 Direct Losses 

Finally, a simplified methodology was adopted to evaluate the potential impact of the 
choice of IM on the direct economic losses that can be expected over the entire inventory. 
This methodology is based on the earlier versions of the Pacific Earthquake Engineering 
Research Center’s Performance Based Earthquake Engineering (PEER PBEE) framework 
(Porter K. A., 2003) and it aims to calculate the direct Expected Annual Losses (EAL) for 
each asset in the database by accounting for the percentage of the replacement cost of the 
bridge associated to each LS, also known as Mean Damage Factor (MDF), together with 
its probability of occurrence as described by Equation 3.1. 

EAL = [𝑝( 𝐿𝑆) 𝑝( 𝐿𝑆)] ⋅ 
€𝐿|𝐿𝑆

€𝐿|𝐿𝑆
൨ 

=  ൣ൫(𝐴𝑃𝐸, 𝐿𝑆) − (𝐴𝑃𝐸, 𝐿𝑆)൯ (𝐴𝑃𝐸, 𝐿𝑆)൧ ⋅ 
𝑀𝐷𝐹|𝐿𝑆

𝑀𝐷𝐹|𝐿𝑆
൨ ⋅ €𝑅𝐶 

 

Equation 3.1 

 

Where: 

LSD: Damage Limit State 
LSC: Collapse Limit State 
𝑝( 𝐿𝑆): annual probability of occurrence of LSD 
𝑝( 𝐿𝑆): annual probability of occurrence of LSC 
€𝐿|𝐿𝑆: direct economic losses associated to LSD 
€𝐿|𝐿𝑆: direct economic losses associated to LSC 
 

𝐴𝑃𝐸, 𝐿𝑆 : annual probability of exceedance of LSD 
𝐴𝑃𝐸, 𝐿𝑆 : annual probability of exceedance of LSC 
𝑀𝐷𝐹|𝐿𝑆: mean damage factor for LSD 
𝑀𝐷𝐹|𝐿𝑆: mean damage factor for LSC 
€RC: bridge replacement cost 
 

For the purposes of the present research, where the aim is to compare the impact of choice 
of IM in these calculations, the MDF associated to the occurrence of LSD and LSC were 
considered deterministically known (no uncertainty was considered) and taken respectively 
as 8% and 100% of the replacement cost of each asset, which are the central MDF values 
indicated for Moderate and Collapse LS for bridges used previously in Perdomo et al. 
(2020) and in other studies conducted by PEER (Stergiou & Kiremidjian, 2008). In the 
same line of thought, the replacement cost of each bridge was taken as proportional to the 
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deck area, considering a generic cost per square meter. The EAL results, expressed as a 
percentage of the overall replacement cost of the entire inventory, are shown in Table 3.3.  

Table 3.3. Results for Expected Annual Losses as percentage of the replacement cost of the entire 

inventory 

IM 
EAL  

Individual 
EAL  

Taxonomy-Based 
EAL 

Ind/Tax 
AvgSa 0.406% 0.407% 0.996 
PGA 0.513% 0.521% 0.985 

 

The EAL results obtained directly by using the probability of exceedance results from the 
NLTHA of each asset are presented in Table 3.3 as “EAL Individual,” where it can be seen 
how the calculations made with the PGA sets lead to an increased estimation of EAL over 
the entire inventory when compared to the AvgSa sets, which can be attributed to the 
overestimation of POE and increased dispersion presented by the PGA results reported in 
Figure 3.10. It is worth noting that while this difference might seem small when considering 
the total cost of the inventory, the PGA estimate represents a 25% increase in EAL over 
the results obtained from AvgSa, which could represent a significant monetary value, when 
referring to numerous bridge structures. 

 

Figure 3.11. Ratio of EAL estimations made using individual fragility curve over taxonomy-based 

curves for each asset, divided by taxonomy-branch 
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The EAL calculation exercise was also conducted using the POE derived from the 
taxonomy-based fragility curves assigned to each asset based on their corresponding 
taxonomy branch. This had the purpose of investigating the differences that can be 
expected when using taxonomy-based curves in regional bridge risk calculations compared 
to having individual curves for each asset. The results of this exercise are shown in Table 
3.3 as “EAL Taxonomy-Based” where it can be seen that there were negligible differences 
between both calculations, leading to the preliminary conclusion that this type of analysis 
can lead to accurate results when evaluating risk metrics over the entire inventory. 
However, this conclusion does not hold true when considering the differences encountered 
between both calculations on an asset-to-asset level, where large variations can be found 
between results of a specific bridge when using the individual curve when compared its 
taxonomy-based counterpart, as shown in Figure 3.11, independently of the IM choice. 

The results presented in Table 3.3 also allowed to evaluate the performance of the choice 
of IM in the definition of the taxonomy-based fragility curves themselves by considering 
the differences obtained in EAL for the entire inventory between the individual and 
taxonomy-based results within the same IM choice. It can be argued that the IM that leads 
to the smallest difference between individual and taxonomy-based results would represent 
a better IM choice for taxonomy-based evaluations, however, even though the AvgSa 
taxonomy-based EAL calculations did provide almost exact results compared to its 
respective individual-based counterpart (Ind/Tax = 99.6%), very similar results were 
obtained with the PGA set (Ind/Tax = 98.5%), therefore, both are deemed appropriate for 
this purpose. 

3.3.5 Road Network Case Study Evaluation 

In order to evaluate the influence of the variability found in the results between fragility 
curves calculated with the different choices of IM in a spatially distributed scenario, a 
fictitious road network case study was defined by locating the bridges in the analysed 
inventory on the primary vehicular road system surrounding the hazard site. For this 
purpose, a database from OpenStreetMap OSM (2020) was mined to extract the road 
network layer for the Campania region and select the location of 163 bridges of the primary 
network (highways and trunks) as shown in Figure 3.12. The fragility properties of each of 
the original case study bridges were assigned to these locations, distributing the properties 
based on the sorted length of assets in both databases to minimize the total length 
difference between the OSM reported values and the assigned fragility curves. The 
differences between both length distributions are shown in Figure 3.13. 
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Figure 3.12. Fictional road network case study defined 

 

 
Figure 3.13. Distribution of total length between OSM and case study database 

 

A historical seismic event was used to evaluate the differences in road network disruption 
that can be predicted when using both choices of IM after an earthquake. For this purpose, 
the 1688 Sannio Earthquake that occurred on June 5th of 1688 in the vicinity of the hazard 
site location was chosen. This event, whose rupture information reconstructed from 
historical accounts (Bucci, Massa, Tornaghi, & Zuppetta, 2005) can be seen in Table 6, was 
estimated to have had a moment magnitude of 7.06 Mw and accounted for extensive 
destruction in the near areas, as well as an estimated 10,000 human casualties. 
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Table 3.4. Input parameters for the 1688 Sannio Earthquake (Bucci, Massa, Tornaghi, & Zuppetta, 

2005) 

Latitude 41.283 
Longitude 14.561 
Moment Magnitude (Mw) 7.06 
Fault mechanism Normal 
Depth  13 Km 

 

This information was used as input to define an earthquake rupture model and perform a 
Scenario-Based Seismic Hazard Analysis (SSHA) using the Ground Motion Field 
Calculator available within the OpenQuake Engine (Silva, Crowley, Pagani, Monelli, & 
Pinho, 2014). For consistency with the hazard model used previously, the GMPE logic tree 
was replicated in these calculations and multiple realizations of ground shaking intensity 
were computed at the location of each bridge for the Sannio earthquake rupture. The mean 
values of shaking intensity obtained for each site and each IM choice are shown in Figure 
3.14. 

 
(a) (b) 

Figure 3.14. Results for ground shaking intensity obtained from the simulation of 1688 Sannio 

earthquake considering: (a) PGA, (b) AvgSa(0.2s-1.0s). 

 

Using these mean estimates of ground motion intensity, the probability of exceedance of 
the damage and collapse limit states were computed for each asset, considering both the 
PGA and AvgSa assigned fragility curves. To determine if a bridge remains operational 
after a seismic event based on these probabilities of exceedance, threshold values of POE 
were defined for the damage and collapse limit states. This simplified methodology to flag 
unusable bridges in a scenario assessment based on thresholds has been previously used in 
research projects, such as INFRA-NAT (2018) and will be used herein to provide a notion 
on the differences that can be expected when using such methodology under both choices 
of IM considered. For the sole purpose of this academic exercise, it was defined that if any 
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bridge in the case study that presented a POE above 90% for the damage limit state or 
30% for collapse would be tagged as closed. These threshold limits, although somewhat 
arbitrary, are considered reasonable for comparison purposes, since the same thresholds 
are defined for both IM choices.  

The results of bridge interruption can be seen in Figure 3.15, where 72 bridges exceeded 
the defined thresholds when using the fragility curves calculated for PGA as IM, in 
comparison to 59 closed bridges detected when using AvgSa. These results are in 
agreement with the findings in previous sections where metrics evaluated with the use of 
PGA as IM choice are consistently conservative when compared to the same values 
calculated with AvgSa.  

 
(a) (b) 

Figure 3.15. Results for bridge interruption obtained from the simulation of the 1688 Sannio 

earthquake, considering: (a) PGA, (b) AvgSa(0.2s-1.0s). 

 

3.4 SUMMARY AND CONCLUSIONS 

In this chapter, a large inventory of existing reinforced concrete bridges with different 
configurations from the Italian road network was analysed through nonlinear time-history 
analysis (NLTHA) using hazard-consistent records, selected for both PGA and AvgSa as 
intensity measures. Multiple fragility and vulnerability metrics were defined to compare the 
impact of the choice of the IM in the statistical and structural performance of a significant 
number of bridge assets from individual and taxonomy-based perspectives. 

Based on the results obtained by the application of the methodology defined, the following 
conclusions can be drawn regarding the fragility estimates obtained by making different IM 
choices: 

 Based on the statistical evaluation of dispersion values βlnY for the sets of fitted 
fragility curves, it is concluded that the use of AvgSa as IM consistently leads to 
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fitted fragility curves with an overall lower curve dispersion in comparison to 
equivalent results calculated using PGA as IM;   

 In terms of structural response dispersion, given a certain IM level, based on the 
distribution of demand over capacity ratios obtained from NLTHA for multiple 
return periods and limit states, it was concluded that the use of AvgSa as IM leads 
to lower mean values of structural behaviour dispersion in comparison to results 
obtained using PGA as IM for all limit states and return periods considered, 
making AvgSa a more efficient choice for IM than PGA; 

 Regarding the structural mechanisms that govern the fragility of different types of 
bridges for the NLTHA campaign performed, the flexure mechanisms were more 
recurrent than shear or unseating for all taxonomy branches and limit states 
considered, regardless of the choice of IM; 

 The use of PGA as choice for IM leads to conservative estimates of probability of 
exceedance of all limit states considered, which in turn may lead to direct loss 
estimates that are in the range of 25% higher expected annual losses over the entire 
bridge inventory. This is an economically important outcome, as one can have a 
more accurate estimate of costs, particularly when having, for instance, limited 
resources with which to improve the seismic performance of the bridge inventory 
of a certain region;   

 Calculations of average annual losses over an entire bridge inventory made with 
appropriately defined taxonomy-based fragility curves lead to almost exact overall 
results in comparison to calculations made with specifically calculated fragility 
curves for each asset in the inventory, regardless of the IM choice. However, large 
differences were observed on an asset-to-asset level and therefore it is not 
recommended to use taxonomy-based curves for a structure independent 
assessment; 

 When performing the simplified exercise of assigning arbitrary but equal 
thresholds between choices of IM to detect closed bridges in a scenario-based case 
study, the use of PGA as the choice for IM lead to conservative estimates for road 
network interruption, which is in line with and confirms the observed trend on the 
probabilistic metrics that were analysed.  

Overall, the outcomes of this study highlight AvgSa as an efficient IM over the more 
traditionally used PGA for regional seismic risk analysis, herein evaluated for the first time 
on a large inventory of real bridges with multiple structural configurations. Furthermore, 
the presented research also provided further insight, beyond the choice of IM, to other 
factors that contribute to the decision-making process of regional risk analysis of bridges, 
such as governing failure mechanisms and the applicability of taxonomy-based results for 
this type of purpose. 



 

 

4. EXPOSURE: EFFECT OF KNOWLEDGE LEVEL 

4.1 INTRODUCTION 

Regional seismic assessment of bridge portfolios has become an effective tool for 
stakeholders and decision makers to quantify the risk associated with earthquake activity 
on their inventories. While the specific methodologies for this type of assessment vary, the 
overarching philosophy relies on dividing the problem into the components of hazard, 
exposure and vulnerability, which are later convoluted in a probabilistic fashion to estimate 
the annual rates of exceeding specific thresholds of structural performance (e.g., pier shear 
failure) or economic losses associated with repairing the damaged bridge structure. 

Given this probabilistic nature of risk assessment, uncertainty plays a key role in the 
process. Two main types of uncertainty are generally recognized in risk assessment: aleatory 
uncertainty, which refers to the inherent random effects present in natural phenomena and 
therefore cannot be reduced; and epistemic uncertainty, which refers to the lack of 
knowledge associated with each component of risk. In the case of the exposure component, 
which deals with the number and characteristics of the physical assets included in the 
assessment, lack of structural information in terms of geometrical dimensions of elements, 
material properties or structural component configurations constitute a source of epistemic 
uncertainty that ultimately affects the accuracy of the overall risk assessment results. While 
it is possible to reduce this uncertainty by performing data collection and surveying 
campaigns, these require a large effort, time and cost, causing most practical seismic risk 
assessment applications for both bridges and buildings to be carried out with incomplete 
information. 

Common practice when addressing the lack of specific structure-level information is to use 
macro taxonomy-based approaches that average fragility information of assets with similar 
configurations, which are expected to have similar performance or observed damage when 
subjected to equal levels of seismic demands. Such practice is the basis for the HAZUS 
(F.E.M.A., 2013) and SYNER-G (Pitilakis, Franchin, Khazai, & Wenzel, 2014) 
methodologies, for example. In order to do this, taxonomy branches are defined by 
grouping key structural parameters that are assumed to influence structural capacity and 
seismic response. Subsequently, multiple representative structures within each taxonomy 
branch are analysed in detail with the intention of capturing the variability of the behaviour 
in each class and defining an average fragility curve. Such a curve can then be applied to 
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each element in the inventory that have been identified as members of the class without 
the necessity of performing specific analysis for every individual asset. 

While this practice is frequent and generally recommended for the regional assessment of 
buildings (D’Ayala, et al., 2015), a recent study conducted on bridges (Stefanidou & 
Kappos, 2019) concluded that the use of taxonomy-based fragility curves can significantly 
affect the accuracy of predictions for individual assets in a portfolio. Another study 
(Abarca, Monteiro, O'Reilly, Zuccolo, & Borzi, 2021) performed on an inventory of bridges 
with full information, confirmed their inaccuracy in bridge specific predictions, while also 
concluding, nevertheless, that the use of taxonomy-based curves leads to accurate estimates 
of the total direct losses for the entire portfolio. This means that these types of curves can 
potentially be a good alternative to assess aggregated losses over entire inventories if 
enough representative structures are used to accurately capture the variability within each 
taxonomy branch. 

The number of structures that should be included in the detailed analysis to fully represent 
a taxonomy branch will depend on the classification scheme that is used to define the 
branches and the inherent variability in behaviour present in each resulting branch. Much 
debate exists on the appropriate bridge parameters to use to group bridge classes. While 
HAZUS is very popular (F.E.M.A., 2013), as evidenced by recent research (Mangalathu, 
Soleimani, & Jeon, 2017; Nielson & DesRoches, 2007) and regularly used in risk projects 
worldwide (Chen, Branum, & Wills, 2013; Yue, Zonta, Bortot, & Zandonini, 2010; Nielson 
& DesRoches, 2007), other options have been proposed (Mangalathu, Soleimani, & Jeon, 
2017; Joint Research Centre, 2013) and researchers typically define their own classification 
depending on the specific characteristics of the inventory to be analyzed. Furthermore, 
since the inherent variability present in each classification is not known beforehand, the 
number of structures chosen to represent each branch is typically defined arbitrarily 
depending on the amount of information available for each specific case and inventory. All 
of this leads to an unknown level of uncertainty in the accuracy of the results obtained.  

In the current chapter, the database of 308 existing bridges from the Italian road network 
detailed in Section 2.1.1 is used to define multiple realizations of the case study presented 
in Section 2.1.4, located in the province of Salerno. This portfolio is used to evaluate the 
uncertainty that can be expected in the total direct economic losses calculated over the 
entire portfolio of each case study realization when increasing portions of the inventory are 
known. The intention is to provide researchers and practitioners dealing with seismic risk 
assessment of bridge inventories with a better understanding of the uncertainty level 
surrounding the results obtained when a fixed percentage of their inventory has full 
information available. This information can also guide the early stages of the regional 
assessment process, in defining the number of structures that should be properly surveyed 
and analysed to obtain a desired level of accuracy in direct loss calculations.  
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Furthermore, recent developments in machine learning applications to risk assessment 
projects have been shown to be promising to increase the accuracy in predictions of 
earthquake-related damage and losses. Mangalathu et al. (2019) tested the performance of 
multiple algorithms to predict the limit state of bridges in a portfolio following a seismic 
event based on specific bridge attributes. They concluded that the use of these algorithms 
allows for the increase in damage detection accuracy by incorporating multiple parameters 
in the calculation other than just the intensity measure level used in typical fragility curves. 
Another recent study (Kalakonas & Silva, 2021) evaluated the use of artificial neural 
networks for the derivation of seismic vulnerability models for building portfolios and 
observed an overwhelming improvement in the reliability and accuracy in risk assessment 
predictions when compared to the traditional regression models, further highlighting their 
potential for risk assessment applications.  

Also, the evaluation of the exposure knowledge impact when using a taxonomy-based 
approach is presented here. It is then used to train a machine learning model with the non-
linear time-history analysis results of the known portions of the inventory and to 
subsequently estimate the fragility curves of each unknown asset. The results obtained 
using these predicted curves are also evaluated in terms of the uncertainty in the total direct 
economic losses calculated over the entire portfolio and compared with the results obtained 
using the traditional taxonomy-based approach.  

4.2 METHODOLOGY 

The methodology defined for this chapter, depicted graphically in Figure 4.1, initially 
consists of creating multiple networks with different configurations of bridges located in a 
case-study region. This is done by taking the assets from the portfolio of 308 real bridges 
with fully known information and randomly locating them within an existing road network, 
thus creating multiple synthetic case study realisations. Each bridge is then analysed in its 
respective location in each case-study realisation according to detailed risk assessment 
procedures, enabling the determination of the direct economic losses (average annual 
losses, AAL) for the entire portfolio, which serves as a benchmark to evaluate the 
uncertainty that can be expected when incomplete information of the inventory is available.  

After the bridge database is used to create the baseline case study presented in Section 2.1.4 
and the NLTHA process described in Section 2.2.3 is performed, the fragility curves for 
the collapse limit state are obtained for each bridge in the case study. These fragility curves 
were then integrated with the hazard curves of each site to obtain the annual probability of 
collapse of each bridge. This was then multiplied by an estimate of the replacement cost of 
the bridge to determine their collapse-based AAL. A sampling process was then adopted, 
whereby portions of the database of results were randomly removed and the remaining 
ones used to calculate taxonomy-based fragility curves, which were then assigned to each 
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asset of the realisations with removed information. Exposure rates between 5% and 100%, 
defined as the ratio between the number of assets with complete information and the total 
number of assets in the inventory, were evaluated by performing 40 different random 
samples for each exposure rate to capture the uncertainty in the calculation of total AAL 
using the taxonomy-based curves on the assets with incomplete information.  

 
Figure 4.1. Methodology used to evaluate the effect for exposure knowledge for bridge inventories 

 

Additionally, the same sampling process was repeated but the known portions of the 
inventory at each iteration were used to train a machine learning model for each bridge 
class to predict the collapse probability at specific IM levels for the bridges with incomplete 
information based on simple geometric properties of the actual structures. These 
predictions were then used to determine continuous fragility functions for each asset with 
incomplete information and estimate the total AAL of the entire inventory at each iteration. 
Finally, statistical trends of the uncertainty associated with each exposure rate when 
applying both the taxonomy-based approach and the machine learning model were defined 
and compared to determine the relative performance of each method. Recommendations 
are also provided on which method to use, depending on the percentage of known 
information and corresponding accuracy. 

4.3 CASE STUDY GENERALIZATION 

In order to generalize the case study used for this study, and strengthen the results of the 
current research, ten different case studies were created by repeating the sampling 
procedure used to allocate the 308 bridges from the database in the position of the 617 
bridges in the case study region of Salerno, hence obtaining ten different configurations of 
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asset types in the road network. In order to maintain the validity of the fragility results and 
avoid having to run NLTHA with different earthquake record sets for the same bridges, 
the sampling process was carried out considering fixed combinations of seismic zones and 
soil types for each bridge. Examples of two case-study realisations are shown in Figure 4.2 
with respect to the resulting spatial distribution of the taxonomy branches and the number 
of occurrences of each branch in the realisation. 

(a) (b) 
Figure 4.2. Examples of sampling used to define Case Study realisations: (a) Case Study realization 

number 1, (b) Case Study realization number 3. 

 

4.4 RESULTS 

4.4.1 Fragility Curves and Direct Loss Assessment 

After the application of the NLTHA process described in Section 2.2.3 is performed, the 
fragility curves for the collapse limit state are obtained for each bridge in the database. The 
results of this exercise are shown in Figure 4.3, separated by taxonomy branch, where the 
mean fragility curve calculated as per Equation 2.5 through Equation 2.8 is shown for 
reference. 



Andres Abarca Jimenez 

 

54 

 
Figure 4.3. Fragility curves for Collapse Limit State obtained for the 308 bridges in the database 

separated by taxonomy branch 

 

The calculation of AALs associated with the collapse limit state was carried out using the 
formulation from the Pacific Earthquake Engineering Research Center’s Performance-
Based Earthquake Engineering (PEER PBEE) framework (Porter K. A., 2003). A very 
straightforward implementation of the formulation is possible by including only the 
collapse limit state, where the product of the annual probability of exceedance of the limit 
state times the direct replacement cost will result in the direct collapse-based AAL, as 
described by Equation 4.1. 
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AAL = 𝑝(𝐿𝑆) ⋅ €𝐿|𝐿𝑆  = 𝐴𝑃𝐸 ⋅ €𝑅𝐶 Equation 4.1 

where: 
LSC: Collapse Limit State 
𝑝( 𝐿𝑆): probability of occurrence of LSC 
€𝐿|𝐿𝑆: direct economic losses associated to LSC 
 

𝐴𝑃𝐸, 𝐿𝑆 : annual probability of exceedance of LSC 
€RC: bridge replacement cost 
 

The annual probability of exceedance (APE) for the limit state was obtained by convoluting 
the fragility and hazard curves obtained for each bridge in each case study. The replacement 
cost for each bridge was taken as proportional to the deck area, considering a generic cost 
per square meter of €930, taken from the mean replacement cost per area assumed by 
Perdomo et al. (2020) for a similar Italian bridge inventory. The results for collapse-based 
direct AAL are show in Figure 4.4 for the two example case studies previously presented 
in Figure 4.2, whereas Table 4.1 summarizes the total AAL calculated for the entire 
portfolio configuration in each case-study realization. These aggregated loss values per case 
study will be used as a benchmark to evaluate the uncertainty related to the exposure 
knowledge level in the following sections. 

Table 4.1. Summary of baseline total portfolio direct loss per case study 

Case Study 
Realization 

Total Direct Loss 

1 € 2,552,567 
2 €2,240,684 
3 €2,291,323 
4 €2,525,752 
5 €2,296,542 
6 €2,338,223 
7 €2,332,061 
8 €2,314,442 
9 €2,211,758 
10 €2,277,621 
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(a) (b) 
Figure 4.4. Results for collapse AAL: (a) Case Study realization number 1, (b) Case Study realization 

number 3. 

 

4.4.2 Evaluation of Exposure Uncertainty 

4.4.2.1 Taxonomy-based Approach 

The use of taxonomy-based curves is rooted in the assumption that assets with similar 
configurations will have a similar performance or damage when subjected to equal levels 
of seismic demand. Therefore, macro fragility curves created for classes of structures can 
be used for assets within the class without detailed analysis. As shown schematically in 
Figure 4.5, if all the assets in a case study were of the same taxonomy branch, specific 
analysis could be carried out on the bridges for which complete structural information is 
available. This then allows the individual fragility curves for each of them to be obtained. 
Subsequently, a mean fragility curve can be assembled by accounting for the mean 
responses, along with the inter and intra dispersion of the curves, given by Equation 2.5 
through Equation 2.8. This would constitute the taxonomy-based fragility curve for the 
class that can be used for all the remaining assets in the taxonomy branch that have 
incomplete information. 

While this assumption is generally accepted for regional-level seismic risk assessments, it is 
expected that such a simplification will introduce a non-negligible level of uncertainty, 
depending on the classification scheme that is used to define the branches and the number 
of bridges per branch with complete information specifically analysed. Since there is no 
consensus on a definitive classification system, or on the number of bridges required to be 
analysed to properly characterise a taxonomy branch, risk analysts will typically make these 
decisions based on the information that is available.  
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Figure 4.5. Schematic representation of taxonomy-based fragility curve assignment on assets of the 

same taxonomy branch with incomplete information 

 

In order to have a comprehensive evaluation of the inherent accuracy of the use of 
taxonomy-based approaches, the classification system introduced in Table 2.2 is used to 
assign a taxonomy branch to each asset in the case-study portfolio realisations described in 
Section 4.3. Once this is done and a baseline collapse-based direct AAL estimate for each 
case study is performed, increasing portions of the portfolio’s results are randomly 
removed. The remaining values are used to calculate taxonomy-based fragility curves that 
are then assigned to each asset of the case studies with removed information based on their 
classification. The ratio of known over unknown portions of the inventories explored in 
this study, hereinafter referred to as exposure rates, ranges from 5% to 100% in 5% 
increments, leading to 20 different exposure rates. 

Additionally, the taxonomy-based curves calculated for each exposure rate will change 
depending on the specific assets available in the known portion of the portfolio. This is 
illustrated in the example shown in Figure 4.6, where four different samples of the same 
exposure rate for the assets in a taxonomy branch from a case-study realisation will yield 
slightly different mean curves. To account for this, 40 different random samples of assets 
with full information are taken for each exposure rate. 
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Figure 4.6. Example of variation in taxonomy-based curves obtained by sampling a 40% exposure 

rate from the RC-SC-9to36 taxonomy branch for Case Study realization 1 

 

For each combination of the 10 case study realizations, 20 exposure rates and 40 known 
asset samples (8000 iterations in total), a recalculation of losses was carried out using the 
specific curves determined for the known portions of the assets. The taxonomy-based 
curves were then applied to the unknown assets, leading to a new estimate of the total 
direct AAL for the entire portfolio that can be compared to the baseline calculation for 
each case study realization. Results obtained for the inaccuracy in calculation with each 
exposure rate evaluated are shown in Figure 4.7. It can be seen that, as expected, the 
uncertainty in the calculation of total direct collapse AAL for the entire portfolio reduces 
as the proportion of assets with full information increases. Furthermore, the uncertainty 
associated with ±2 standard deviations has a highly nonlinear trends up to an exposure rate 
of about 30%, after which the reduction becomes almost linear. As such, the 30% threshold 
seems to be a good threshold for the minimum amount of assets within a portfolio that 
should be analysed when using taxonomy-based fragility curves, since obtaining more 
complete exposure information above this point leads to a much lower increase in accuracy 
in the overall results. In addition to the uncertainty estimates, median values of prediction, 
calculated using taxonomy-based curves, are consistently close to the baseline results 
calculated with individual curves specific to each asset. This is in line with findings made in 
previous studies (Abarca, Monteiro, O'Reilly, Zuccolo, & Borzi, 2021) and further 
demonstrates that the use of taxonomy-based curves can lead to accurate mean estimates 
of the total direct losses for the entire portfolio. 
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(a) (b) 
Figure 4.7. Results of total inventory direct AAL Taxonomy over Individual based on different 

exposure knowledge percentages: a) results for each iteration, b) statistical trends observed in 

results. 

 

4.4.2.2 Machine Learning Model 

A supervised machine learning model was evaluated in terms of its capacity to reduce the 
uncertainty in calculations deriving from the lack of exposure data to assess individual 
structures in a portfolio. The objective of this evaluation was to predict the fragility curves 
of assets with unknown information within the same sets of taxonomy branches by using 
simple structural geometrical parameters. These parameters differentiate each asset within 
the class and are used to predict a suitable fragility curve for each bridge, using the results 
from the portion of the inventory with full information. This contrasts with the taxonomy-
based approach that uses the same mean fragility curve for all the unknown assets within 
the taxonomy branch, regardless of the variations between geometric characteristics of 
elements within the same class that could also influence their structural performance.  

For this purpose, a machine learning model is built for each taxonomy branch and trained 
using the database of NLTHA results of assets with full information to predict the 
probability of exceeding the collapse limit state given simple bridge geometrical parameters 
and an IM level. These models are then used for each bridge with incomplete information 
to predict their probability of exceedance of the limit state at discrete points of IML, after 
which a continuous fragility curve is fitted and assigned to each corresponding bridge.  
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Figure 4.8. Schematic representation of random forest algorithm prediction methodology 

 

A Random Forest Classification Model was chosen given its good performance when 
compared to other machine learning algorithms for similar endeavours recently 
demonstrated by (Mangalathu, Hwang, Choi, & Jeon, 2019). This type of algorithm uses a 
collection of decision trees built with bootstrapped subsets of the NLTHA database. Each 
tree is fitted to provide predictions of the occurrence of collapse based on its sub-sample 
and all predictions provided by each tree are later weighted to determine the probability of 
exceedance of the collapse limit state, as depicted graphically in Figure 4.8. This type of 
model, as with most supervised machine learning models, uses a labelled dataset that has 
both its independent variables (inputs) and its outcomes. Moreover, it progressively 
calibrates its own numerical properties to produce an inferred function that makes 
predictions about the output values. 

The same combinations between case study realizations, exposure rates and known asset 
samples used for the taxonomy-based approach were analysed. The NLTHA results of the 
known portions of the inventories were used to train the random forest models and their 
prediction results were employed to determine the fragility curves of the assets with 
incomplete information. Subsequently, an estimate of the total direct AAL for the entire 
portfolio was computed and compared to the baseline calculation for each case-study 
realization, as done previously for the taxonomy-based approach. 

For each iteration and each model, a database was assembled using the results for each 
bridge that was sampled as having complete information. The occurrence of collapse as a 
binary operator (i.e., 1: Collapse, 0: Non-collapse) representing the dependent variable 
(target) and a vector of independent variables (or features) was retrieved for each ground 
motion result obtained during the NLTHA process. A set of six features were used: number 
of spans, total length, average span length, maximum pier height, deck width and the IM 
level of each ground motion record. Given that these variables, to be processed by the 
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Random Forest algorithm, have different units and orders of magnitude, each was modified 
using a minimum-maximum scaling process that transforms the data of each feature by 
scaling the values within the 0 and 1 range. 

In terms of the properties assigned to the Random Forest algorithm, a different model is 
created for each of the nine taxonomy branches at each of the performed 8000 iterations 
and determining and implementing optimal parameters for each model would be 
unpractical. As such, the same settings shown in Table 4.2 were used for all models; these 
values were determined by averaging the optimised settings for a discrete set of tests 
performed during a calibration stage. 

Table 4.2. Main parameters selected for the Random Forest Algorithm’s implementation 

Parameter Value 
Number of estimators 20 
Maximum Tree Depth 12 

Maximum Features ඥ# 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

Minimum Leaf Samples 2 
Minimum Split Samples 2 

 

The resulting performance of the models changes depending on the exposure rate: the lack 
of data present when evaluating lower exposure rates leads to a very low accuracy in the 
prediction of the probability of occurrence of collapse, which reflects on the definition of 
the fragility curves for the unknown assets. In turn, as higher rates are evaluated the 
performance improves. As an intermediate example, the performance of a single model, 
evaluated on the assets with incomplete information and created for the RC-SC-9to36 
taxonomy branch, using an exposure rate of 50%, is shown in Table 4.3 and Figure 4.9.  

Table 4.3. Example performance of Random Forest model iteration on Case Study realization 1, 

Exposure rate = 0.5, RC-SC-9to36 taxonomy branch 

Classification Confusion Matrix Prediction of Probability of Collapse 

 

Root-mean-squared error (RMSD) 0.151 

Mean absolute error (MAE) 0.078 

Median absolute error (MedAE) 0.021 

Coefficient of determination (R2) 0.829 

 

NC C Recall

NC 4459 389 0.92

C 671 1831 0.73

Precision 0.87 0.82 0.86
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(a) (b) 

Figure 4.9. Example performance of Random Forest model iteration on Case Study realization 1, 

Exposure rate = 0.5, RC-SC-9to36 taxonomy branch: a) Prediction of collapse probability of 

exceedance for unknown bridges, b) Collapse fragility curves fitted from probability predictions. 

 

The confusion matrix for the classification of the intermediate example is also presented in 
Table 4.3. It consists of a table that records the number of correct and incorrect predictions 
given by an algorithm, and can be used to evaluate the performance of the model to predict 
the occurrence of collapse. In this table, the predicted results (organized in columns) are 
correlated with the actual assignments (organized in rows), while the resulting diagonal 
elements represent the limit state assignments that were correctly predicted by the model.  
It can be seen that the accuracy of the model, calculated as the ratio of the assignments that 
are correctly predicted to the total data, is 86%. This is rather good performance and is in 
line with similar previous research exercises (Mangalathu, Hwang, Choi, & Jeon, 2019). A 
reduction in performance is observed in terms of the prediction of the probability of 
occurrence of the collapse limit state, as demonstrated by the metrics provided in Table 4.3 
and Figure 4.9 (a). In fact, it can be seen that, while the typical magnitude of the prediction 
inaccuracy (described through the mean absolute error) is relatively low at 8%, the 
performance does not seem to be uniform across the possible range of exceedance 
probabilities with intermediate values showing larger residuals with a trend towards 
underprediction. 

Using the predictions of probability of exceedance to determine the fragility curves of the 
assets with unknown information in the intermediate example gives the results shown in 
Figure 4.9 (b). It can be seen that the predicted curves have a similar distribution as the 
calculated curves for the same bridges, with a slight tendency to underestimate the ‘real’ 
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fragility of the assets, which is in line with the underprediction of probability of exceedance 
mentioned previously.  

Overall, the processing of direct collapse AAL for the entire case study over each iteration 
leads to the results shown in Figure 4.10. In this case, as with the taxonomy-based 
approach, the uncertainty in the calculation of total AAL, with respect to the benchmark, 
decreases as the inclusion of more assets with complete information increases. While a 
behaviour similar to the taxonomy-based results is observed, i.e. an initial nonlinear 
reduction of uncertainty can be seen for lower levels of exposure knowledge, the shift to a 
linear trend for the ±2 standard deviations occurs at an exposure rate of 50%, after which 
the results seem to have a much lower increase in accuracy. This behaviour is attributed to 
the attainment of sufficient data in the pool of assets with known information starting at 
the 50% exposure rate mark, which allows the adequate training of the machine learning 
models to predict probabilities of collapse. It is important to note that the same trend is 
found for the taxonomy-based curves at a 30% exposure rate, which is a significant 
difference in the amount of information required to obtain a substantial reduction in 
uncertainty. This leads to the preliminary conclusion that taxonomy-based approaches have 
an advantage over machine learning models to assess total direct losses in portfolios with 
limited information and the latter should only be considered when significant portions of 
the inventory have complete information. 

(a) (b) 
Figure 4.10. Results of total inventory direct AAL Machine Learning over Individual based on 

different exposure knowledge percentages: a) results for each iteration, b) statistical trends observed 

in results. 
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4.4.2.3 Result Comparison 

A comparison between the statistical trends observed in the uncertainty of the calculation 
of total collapse-based direct AAL using the taxonomy-based approach and the machine 
learning models is presented in Figure 4.11 in terms of normalized difference with the 
benchmark instead of ratios. It can be seen that median values are generally stable when 
using taxonomy-based curves, even for low exposure rates, while the use of the machine 
learning models tends to overpredict median losses below the 15% exposure rate mark. 
Furthermore, even though similar trends are observed using both methods, the machine 
learning models definitively outperform the taxonomy-based curves only after achieving an 
exposure rate of 40%, a point where both methods display an accuracy of approximately 
±10% for the ±2 standard deviations in uncertainty. It is important to note that, while this 
improved comparative performance of machine learning models at the 40% mark is 
apparent from the results, the behaviour of the uncertainty for ±2 standard deviations is 
still nonlinear at this point, changing to a linear trend until the 50% exposure rate as 
mentioned previously. This means that, while it does perform better than the taxonomy-
based case, there is still a significant reduction in uncertainty by increasing the exposure 
knowledge from 40% to 50% for the machine learning case. All of this strengthens the 
conclusion that for cases where low rates of exposure knowledge are present in the 
inventory, the use of taxonomy-based curves should be preferred to the use of machine 
learning models. 

It is important to note that the machine learning results were obtained using the same 
model settings for every iteration, independently from taxonomy branch and exposure rate. 
This represents a limitation in the interpretation of the results since a calibration process 
for each model would be done in a real case study, which would probably improve the 
accuracy of the results, making these models potentially more recommendable at lower 
exposure rates. However, it is also important to mention that the use of machine learning 
models requires greater expertise and computational resources to build, calibrate, interpret 
and deploy the algorithms, when compared to the use of taxonomy-based curves. 
Consequently, analysts should consider the increased effort together with the slight 
decrease in uncertainty before deciding on a methodology, depending on the available 
information.  
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Figure 4.11. Comparison of results of total inventory direct AAL using a traditional taxonomy-based 

approach and machine learning models for different exposure knowledge percentages 

 

In general, for both cases, the presence of a nonlinear behaviour in the reduction of 
uncertainty in ±2 standard deviations when low exposure rates are considered can be used 
as a decision variable to determine the amount of assets in an inventory that should be 
analysed. For example, when dealing with the seismic risk assessment of bridge inventories 
with only 10% of assets with full knowledge, the cost of increasing the knowledge of the 
inventory to 20% could perhaps be justified knowing that, according to the results 
obtained, this would result in a significant reduction in uncertainty (from ±30% to ±20% 
using taxonomy-based curves). On the other hand, if 50% of the inventory would have 
complete information, the same additional cost that would be incurred to increase this value 
to 60% would only lead to a reduction in uncertainty from ±10% to ±8%, when using the 
same approach. 
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4.5 SUMMARY AND CONCLUSIONS 

In this chapter, the database of 308 bridges with complete structural information was used 
to generate 10 realizations with different configurations of the case study presented in 
Section 2.1.4, by randomly assigning an asset from the database to each of the 617 locations 
of bridges in the primary and secondary road networks of the province of Salerno, Italy. 
The seismic risk level of these case studies, in terms of the total direct average annual losses 
(AAL) associated to the collapse limit state, was assessed. These results were then used as 
a benchmark metric to test the implementation of popular and innovative methods in 
assessing regional bridge portfolios with limited information. For this purpose, the 
uncertainty that can be expected when considering different percentages of knowledge 
levels using a taxonomy-based approach as well as a machine learning model was estimated 
and analysed. Furthermore, the exploration of these results led to the characterization of 
the trends that can be expected in uncertainty depending on different rates of exposure 
knowledge, as well as the definition of useful exposure rate thresholds to be used in 
practical applications to define the amount if exposure information required to obtain a 
desired level of accuracy in direct loss results.  

Based on the results obtained by the application of the different approaches, the following 
conclusions can be made regarding the epistemic uncertainty that is introduced to regional 
seismic assessment of bridge portfolios by partial exposure knowledge: 

 The use of taxonomy-based curves that average fragility results of assets with 
similar configurations can lead to accurate median estimates of the aggregate losses 
over an entire portfolio. This was demonstrated by the results, which show how 
the median estimates of AAL are consistently close to the benchmark results 
calculated using structure specific curves, independently from the exposure rate 
considered; 

 When considering the use of taxonomy-based curves, based on the results of this 
case-study, a complete knowledge of a minimum of 30% of the inventory is 
recommended to avoid the large uncertainty associated with lower exposure rates. 
The same effect was observed when using machine learning models, however the 
significant reduction in uncertainty happens after 50% of the inventory is known 
in this case. Furthermore, the same results showed that, when the known portions 
of the inventory are larger than these thresholds, incurring in expensive surveying 
campaigns to increase exposure knowledge becomes less attractive, since it will 
lead to a lower decrease of uncertainty; 

 The use of machine learning algorithms to predict the fragility curves of bridges 
with incomplete information can outperform typical taxonomy-based approaches 
only when sufficient results from assets with full information are available to 
properly train the models. For the case studies explored here, a 40% exposure rate 
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was found to be the minimum at which the use of machine learning becomes 
comparatively attractive. However, the results from both approaches are similar 
and practitioners should consider the added complexity and computer power 
required to use these models when seeking for an (often slight) increase in 
performance. 

 





 

 

5. VULNERABILITY: SIMPLIFIED INDIRECT LOSS 
ASSESSMENT 

5.1 INTRODUCTION 

Road transportation networks are a major contributor to the economic development of 
modern society and play an important role in the everyday life of its users. Whether they 
are used for transportation of goods, daily commutes of people, or accessibility of 
emergency services following a disaster, the importance of their proper functionality is 
undeniable. Modern and developed countries tend to have very dense and robust 
transportation networks that can include hundreds of thousands of kilometres of roads, 
typically built over several decades (Pinto & Franchin, 2010) (Calvi, et al., 2019). Along 
with these roads, there is a large amount of supporting infrastructure, such as bridges and 
viaducts, whose structural integrity is susceptible to natural hazards or general ageing and 
deterioration. Recent bridge collapses in Italy have demonstrated the large impact that these 
interruptions can have on the functionality of the surrounding road network for extended 
periods of time. The collapse of the Polcevera (Morandi) bridge, for example, caused 
indirect losses of €359,1 million in the immediate wake of the collapse, with estimated 
annual losses to the Italian economy in the vicinity of one trillion euros (Camera di 
Commercio di Genova, 2018). This has increased public interest in these structures and 
have thus placed pressure on governments and bridge management agencies to assess and 
identify vulnerable elements in the network, quantify their fragility to multiple hazards, and 
determine their respective impact on the overall system. Recent notable efforts led the 
Italian Superior Council of Public Works, within the Ministry of Infrastructure and 
Transport (MIT), to issue a technical report with guidelines on risk classification and 
management, safety assessment and monitoring of existing bridges (Consiglio Superiore 
dei Lavori Publici, 2020). These guidelines have already become part of the mandatory 
legislation for bridge management institutions and concessionaries in Italy (Ministero delle 
Intrastrutture e dei Trasporti , 2020).  

While the probabilistic assessment of a bridge collapse under seismic hazard has been 
object of research in many past studies (Lupoi, Franchin, & Schotanus, 2003) (Borzi, et al., 
2015), the direct consequences related to the economic cost of repairing or replacing the 
structure are usually focused on. The indirect component of loss, which addresses the 
economic impact incurred when there is a disruption in the road network, remains a less-
explored field for researchers and practitioners. Indirect losses have the particularity of 
being very distributed over a large number of users throughout extended periods of time 
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and many decisions that influence the duration of the interruption are often political and 
not technical in nature. Also, transportation modelling requires some degree of technical 
expertise and a large amount of information on both the characteristics of the network and 
the travel demands of the users, which are not always readily available.  

Different quantitative approaches have been considered in past research to calculate the 
effects of infrastructure vulnerability on the performance of transportation systems. Earlier 
studies aimed to quantify a variety of metrics that can provide insights to the consequences 
of infrastructure disruption, such as accounting for the loss of connectivity between origin 
and destination pairs (Dueñas-Osorio, Craig, & Goodno, 2007), the increase in travel 
distance (Chang, Shinozuka, & Moore, 2000) or travel delays after the occurrence of 
disastrous events (Kiremidjian, et al., 2007); these methodologies, however, do not directly 
account for economic losses. More refined approaches have been proposed, performing a 
large number of event simulations (Shinozuka, Murachi, Dong, Zhou, & Orlikowski, 2003) 
(Kilanitis & Sextos, 2018). They account for economic losses in a probabilistic fashion by 
exploring the effects of events on a transportation network model, even providing 
estimates of the evolution of the recovery process in time. More recent studies, such as the 
one performed by Miller and Baker (2016), go into great detail by accounting for post-
disaster changes in travelling demands and evaluating consequences using activity-based 
travel models. This permits an analysis that goes beyond economic losses alone, but also 
the identification of geographic and demographic groups that may be disproportionately 
affected by certain events. Some more recent efforts (Gehl, Cavalieri, & Franchin, 2018) 
evaluate the use of approximate Bayesian networks, trained on results from earthquake 
simulations influencing an infrastructure system, to predict system performance metrics 
that can include indirect losses. These studies have the disadvantage of being hazard-
specific and requiring a great amount of input data and computational power, which limits 
their wider applicability to other case studies.  

With the above challenges and gaps in mind, this chapter presents a methodology to 
calculate the economic impact of interruptions induced in a road network due to the 
collapse of individual bridges, as well as a simplified alternative to identify the relative 
importance of the different bridges in a road network portfolio, based on the indirect losses 
associated to the collapse of each structure. Both alternatives are hazard independent and 
useful for prioritization purposes since, as it will be detailed in the following sections, they 
only evaluate a partial account of the consequences of disruption in the road network on a 
bridge-by-bridge level. Furthermore, even if the simplified alternative does require the use 
of a transportation network model, it is straightforward and less resource demanding than 
other currently available methodologies. 
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5.2 METHODOLOGY 

The procedure used in this chapter to evaluate the proposed indirect loss quantification 
methodology and its simplified alternative, consists of initially creating the transportation 
network model for the case-study region (i.e., case study 2 located in the province of 
Salerno, Italy). As can be seen in Figure 5.1, two models were considered herein: a refined 
one, for the detailed methodology, which considers travel demand data and appropriate 
road modelling parameters to account for congestion in the network; and a less detailed 
version of the same model, for the simplified alternative, which relies only on information 
obtained from a common open-source database (OpenStreetMap contributors, 2020) layer 
data.  

For the detailed methodology, the calculation of the economic impact of bridge 
interruptions was made using the refined network model to distribute the travel demands 
in the system. These results were then used to calculate the operation cost of the network’s 
use, combining nominal costs for automobile travel with the aggregated results of time 
spent and distance travelled daily by the users. This exercise was carried out considering 
the network in its baseline condition (i.e., when all bridges are operational) and was repeated 
afterwards by removing each bridge at a time from the model, in order to determine the 
increased daily operation costs associated with the disruption caused by the absence of each 
bridge. The total indirect loss associated with each bridge was obtained by multiplying the 
obtained operation costs by an estimate for the median repair time of bridges in Italy.  

 
Figure 5.1. Methodology used to define a framework to estimate indirect losses and a simplified 

proxy-based alternative 

On the other hand, the simplified version of the network model was used to obtain a travel 
time impedance matrix of the system, a common product used in transportation 
engineering that records the roundtrip duration between all possible origin and destination 
pairs (Tian, Chiu, Sun, & Chai, 2020). As with the refined model, this exercise was 
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performed for the baseline conditions of the network, as well as when each bridge was 
removed from the model. The sum of all indices of the matrix, indicative of the time it 
would take a single user to travel to and from each point of the network, was then used as 
a metric for each case. Finally, the increase of this sum with respect to the baseline 
condition was defined as a proxy of the relative importance of each bridge in the network 
in terms of the disruption it causes on the network. Both the detailed methodology and the 
simplified alternative were applied to the 617 bridges located in the highway, primary and 
secondary road network within the case-study province of Salerno. The results for indirect 
economic losses calculated using the detailed methodology were used to define the priority 
of each bridge in the case study, which was then used as a benchmark to evaluate the 
priorities obtained using the simplified proxy-based alternative. 

5.3 ROAD NETWORK MODELLING 

Information about the road network of Salerno was taken from the OpenStreetMap 
database (OpenStreetMap contributors, 2020), which comprises all roads within the 
highway, primary and secondary systems, including 2929 nodes and 3086 links, of which 
617 represent either bridges, viaducts or overpasses (referred to herein as bridges for 
simplicity). The geometric centres of the 158 municipalities in the Salerno province were 
used as traffic attraction zones (centroids) from which all trips were assumed to originate 
and conclude. A graphical representation of the network is shown in Figure 5.2. 

  
Figure 5.2. Salerno road network built from OpenStreetMap layers 
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A transportation network model was created using the software AequilibraE 
(www.aequilibrae.com), an open-source Python and QGIS package to perform 
transportation network analysis. Using this, the baseline traffic conditions were determined 
and the importance of each bridge in the network was assessed. This model is based on 
Static Traffic Assignment (STA), which is a simple and widely-used assignment method to 
determine traffic distribution on road networks (Saw, Katti, & Joshi, 2014). The accuracy 
of this type of model is generally perceived as insufficient in congested networks and the 
focus of research within the transportation field is shifting towards more refined modelling 
methods (Brederode, Pel, Wismans, Romph, & Hoogendoorn, 2019). Nevertheless, STA 
was chosen herein since it is still the preferred tool for strategic transportation planning 
due to its simplicity and efficiency (Saw, Katti, & Joshi, 2014). Aside from the geometric 
configuration of links, nodes and centroids presented in Figure 5.2, the following elements 
were also considered to accurately build a numerical model of the network that can generate 
predictions on the traffic conditions of the case-study region: 

 Traffic demand information regarding the travel patterns of the users of the 
network between centroids; 

 Information about the properties of each link, including free flow speed, nominal 
traffic capacity and a relationship between traffic flow and travelling speed to 
account for congestion. 

In terms of traffic demands, a database containing travel pattern information for work and 
study purposes performed in 2011 was taken from the Italian Institute of Statistics (ISTAT, 
2014) and used to define origin-destination demands between the municipalities of Salerno. 
For the current exercise, only trips performed by private car owners were considered since 
it represents the major contribution to transportation demands in the area and no 
information of freight or public transportation was available. A total of 80,562 trips, 
distributed in four timeframes, were identified within the case study region as shown in 
Table 5.1 whereas the daily total incoming trips per municipality are shown in Figure 5.3(a).  

Table 5.1. Travel demands disaggregated per timeframe taken from census information 

Timeframe Number of trips 
< 07:15 26,138 

07:15 – 08:14 38,240 
08:15 – 09:14 13,380 

> 09:15 2,804 
Total 80,562 
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(a) (b) 
Figure 5.3. Information used to create network model: (a) Daily inbound traffic demands taken from 

census data, (b) OpenStreetMap road classification. 

 

In terms of link information, all links in the network model were first divided according to 
their classification (i.e., highway, primary or secondary) in OpenStreetMap as shown in 
Figure 5.3(b). Subsequently, the volume-delay function modelling parameters were taken 
from previous research regarding Italian road characteristics (Maratini, 2008), according to 
the commonly used BPR model (Bureau of Public Roads, 1964) for the different road types 
defined in the network, as shown in Table 5.2. Free flow speed was taken as the speed limit 
reported for each road in the OpenStreetMap database. While some studies (Zilske, 
Neumann, & Nagel, 2011) modify the speed limit values to try to accurately represent the 
free flow speed according to the case study characteristics, this was not done in this study 
since no precedent for acceptable modification factors was found in literature for the case 
study region. Moreover, the implementation of the speed limit provided good results during 
the validation stage, which will be demonstrated later in this section. It is important to note 
that detailed traffic modelling can include additional information on the nodes about 
intersections, such as accounting for stop-lights and turn penalties, to capture the natural 
delays caused by drivers making steep angle turns. In the current study, these parameters 
were not included since they are more relevant for the micro-modelling of urban 
transportation networks rather than a larger regional assessment; while this represents a 
limitation of the study, it is not expected that their absence will cause a significant impact 
on a regional model of motorway and primary roads, such as the one being proposed 
herein. 
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Table 5.2. Volume-delay function parameters used for road network modelling 

Typology 
Capacity 

(vehicles/hour/lane) 
BPR Parameters 

α β 
Highway 1600 0.28 0.93 
Primary 1400 0.25 1.13 

Secondary 1400 0.25 1.13 

 

A trip distribution based on the minimization of travel time of each user was carried out 
using a bi-conjugate Frank-Wolfe algorithm (Mitradjieva & Lindberg, 2013) to determine 
the baseline traffic conditions of the fully operational road network. The results for the 
distribution in terms of traffic flows for each link, aggregated from each timeframe are 
shown in Figure 5.4(a). It can be seen that there is a large concentration of traffic flows 
located in the corridor connecting the Salerno and Vallo della Lucania municipalities, which 
is in agreement with the travel demands shown previously in Figure 5.3(a). The results in 
terms of trip duration were compared with the corresponding values reported in the census 
data to validate the model. As can be seen in Figure 5.4(b), even though the model tends 
to predict slightly longer travelling times when compared to the census data, overall, there 
is quite a good general agreement for most of the trips. The mismatch for longer travel 
times was expected since the model does not include the entirety of roads in the network 
(i.e., it excludes the local residential road system) therefore increased levels of congestion 
can occur artificially in the model by having to distribute the totality of the traffic demands 
in a reduced number of roads. 

(a) (b) 
Figure 5.4. Road network model performance: (a) Baseline traffic flows (line thickness is 

proportional to traffic flow), (b) Trip duration comparison of census data with baseline model 

results. 



Andres Abarca Jimenez 

 

76 

5.4 INDIRECT LOSS CALCULATION 

5.4.1 Daily Indirect Loss 

To determine the benchmark daily indirect loss associated with the collapse of each bridge 
in the case study, the previously described road network model, used to determine the 
baseline conditions of the network when all bridges are operational, was employed. Two 
main metrics were obtained from the model: the vehicle hours travelled (VHT), and the 
vehicle distance travelled (VDT), corresponding to the total amount of time and distance, 
respectively, that all the users in the network experience during their travels. Both metrics 
were then combined with reference costs for typical automobile fuel efficiency and fuel 
prices in Italy, as well as hourly salary rates appropriate for the Salerno province (ISTAT, 
2020), as shown in Table 5.3. This allowed the calculation of a daily operation cost (DOC) 
of the road network in its current configuration by applying Equation 5.1. 

Table 5.3. Values used for calculation of economic cost of bridge interruption 

Value Unit Cost 
Car efficiency 0.075 litres / km 
Cost of fuel €1.65 / litre 

Average hourly salary (Campania) €12.9 / hour 
 

                               𝐷𝑂𝐶 =  𝐹 ⋅ 𝐸 ⋅ 𝑉𝐷𝑇 + 𝐻 ⋅ 𝑉𝐻𝑇   Equation 5.1 

where: 

DOC: Daily operation cost 
𝐹: Average cost of fuel 
𝐸: Automobile fuel efficiency 
 

𝐻: Estimated hourly rate 
VDT: vehicle distance travelled 
VHT: vehicle hours travelled 

Since the travel demand information that was used only included data from morning 
commutes, both the VDT and VHT values obtained from the trip distribution on the 
network were doubled to capture the total daily operation cost of the network. This of 
course assumes the same travel distribution occurs during the returning evening commute 
for all users, which might be inaccurate but serves as a reference value within the current 
methodology. Applying Equation 5.1 to the results obtained from the trip distribution of 
the baseline road network model leads to a Baseline Daily Cost (BDC) of operation for the 
network of approximately €1.64 million. Subsequently, the road network was modified by 
assuming the collapse of each bridge in the network, removing the appropriate link in the 
model and rerunning the daily operation cost with the modified network configuration to 
determine a Modified Daily Cost (MDC), associated with the collapse of each bridge, as 
shown in Figure 5.5. A daily interruption cost of each bridge was then calculated as the 
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difference between the BDC and the appropriate MDC for the bridge in question. Readers 
are advised to keep in mind that this calculated cost is inherently incomplete, since it does 
not account for all transportation modes and obviously cannot capture possible losses that 
the collapse of some bridges would have on local industries, due to increase logistic costs; 
nonetheless, the calculated costs are proposed herein as reference values of loss for 
prioritization purposes in a decision-making context.   

 
(a) (b) 

Figure 5.5. Methodology to determine Daily Indirect Loss: (a) Use of baseline traffic conditions to 

calculate a daily operational cost, (b) Calculation of modified daily operational cost by removing 

bridge i-th 

 

After conducting this for the entire case study, daily interruption cost results for each bridge 
were obtained and are shown in Figure 5.6. It is important to note that some of the bridges 
in the case study, identified as essential in Figure 5.6, were located near the borders of the 
case-study region and did not produce interruption cost results when applying this 
methodology. This was because their collapse resulted in no alternative paths, causing the 
complete disconnection of some of the centroids. This represents a limitation of the applied 
methodology since alternate routes are likely available when considering neighbouring parts 
of the road network, as well as the residential roads that were intentionally excluded from 
the network model.  To avoid this issue in future research, one could either extend the 
network model beyond the limits of the case-study regions or account for the costs of 
cancelled trips; however, since in the context of disaster management this disconnection 
would also deny access to emergency services, the decision made here was to indicate these 
assets as essential and focus on the remaining 531 bridges that did produce indirect loss 
results with the methodology used. 

Furthermore, a small number of bridges yielded negative values of interruption cost, which 
would theoretically mean the users are experiencing a monetary benefit from the collapse 
of a bridge. This is caused by how the distribution algorithm minimises travel time while 
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the cost calculation also accounts for distance and some longer duration trips might incur 
in shorter distances therefore causing the overall cost to be negative for a few cases. This 
is deemed not to be an important limitation since the calculated negative values are 
negligible for. For example, the bridge with the highest calculated negative value reports a 
daily indirect loss of -€144, which is distributed amongst the 80,652 users considered in the 
network, leading to a trivial monetary value in comparison to the highest positive values 
calculated. 

(a) (b) 
Figure 5.6. Daily indirect cost of bridge interruption: (a) Geographical distribution, (b) Histogram. 

 

5.4.2 Repair Time 

In order to consider the total indirect loss associated to the collapse of a bridge, the total 
amount of disruption time incurred from the day of the collapse until the reopening of the 
bridge (referred to herein as repair time) needs to be accounted for. In general, the repair 
time of bridges varies widely from one case to another, driven mainly by economic and 
political decisions specific to each case. For example, a non-exhaustive list of bridge 
collapses in Italy since 2004, collected from reports in the media, is presented in Table 5.4. 
It can be seen that, for instance, the collapsed Lecco bridge in 2016 took 33 months to 
repair and reopen, while the much larger Morandi bridge that collapsed in 2018 took 24 
months to reopen, mainly driven by the widespread media coverage of the collapse and 
relative importance of both bridges to their respective communities. 

Previous research on this matter relied on repair time models, for which a probabilistic 
time is described by some function specific to each country or region, mainly defined 
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through expert opinion. Median repair times used in previous research range from 190 days 
(Shinozuka, Murachi, Dong, Zhou, & Orlikowski, 2003) to 450 days (Kilanitis & Sextos, 
2018). In this study, the data from the 10 recent collapses in Italy shown in Table 5.4 was 
used to fit the lognormal distribution illustrated in Figure 5.7. 

Table 5.4. Bridge collapses reported in Italy since 2004 

# Region Province Bridge 
Name/Location 

Length 
(m) 

Collapse 
Date 

Re-opening 
Date 

1 Friuli Pordenone Viadotto del Chiavalir 25.00 Dec-04 Jul-09 

2 Liguria Genova Carasco 258.00 Oct-13 Apr-14 

3 Sardinia Nuoro Oliena-Dorgali 130.00 Nov-13 Jan-20 

4 Sicily Agrigento Lauricella-Petrulla 476.00 Jul-14 Mar-18 

5 Lombardy Lecco Annone 56.00 Oct-16 Jul-19 

6 Marche Ancona Ancona 45.00 Mar-17 Jun-18 

7 Liguria Genova Viadotto Polcevera 1182.00 Aug-18 Aug-20 

8 Liguria Savona Madonna del Monte 30.00 Nov-19 Feb-20 

9 Toscana Massa-Carrara Albiano Magra 290.00 Apr-20 Mar-22 

10 Piedmont Novara Romagnano Sesia 156.00 Oct-20 Aug-21 

 

 
Figure 5.7. Cumulative histogram and log-normal fit for repair time observations based on recent 

collapses in Italy 

 

It is important to note that the median value of 710 days obtained from the lognormal 
fitting shown in Figure 5.7 is much larger than the values used in previous research for 
other countries, however, the latter values were not based on collapse observations but on 
expert opinion, and their sources underline the limitations of their definitions (Shinozuka, 
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Murachi, Dong, Zhou, & Orlikowski, 2003). Furthermore, there seems to be a great 
discrepancy between observed repair times of Italian bridges, ranging from 3 to 75 months 
for an asset to be reopened after an unexpected collapse. This will obviously have a directly 
proportional impact on the total indirect loss of a collapsed bridge therefore bridge 
management agencies should have systems in place to reduce the repair time of assets with 
high daily disruption costs. 

5.4.3 Total Indirect Loss Results 

No evident indication of what repair time from the distribution shown in Figure 5.7 can be 
used for each bridge, hence the median value of 710 days obtained from the lognormal 
fitting was used as a fixed value for all elements in the case study. Applying this multiplier 
to the daily indirect loss results that were previously obtained enabled the quantification of 
to the median total indirect loss for each bridge in the case study, as shown in Figure 5.8. 
It is important to note that, instead of using a fixed value of repair time for all the bridges, 
an extensive sampling scheme could have been adopted by taking different random samples 
from the distribution shown in Figure 5.7 for each bridge in the case study and recording 
the total indirect loss results for the entire inventory repeatedly. However, since this 
parameter would be the only being modified during the sampling and its effect is linear on 
the total indirect loss calculation, the sampling exercise would ultimately result in a total 
indirect loss distribution for the entire inventory with the same distribution as the one for 
the repair time, with median results equal to the ones reported herein. 

 
Figure 5.8. Results for median total indirect loss on the case-study network 
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The results indicate a median value of total indirect loss of €1.37 million, with 85% of the 
bridges in the inventory presenting values under €10 million, but with some bridges having 
very high disruption costs reaching values of €551.82 million. The geographical distribution 
of the indirect losses seems to closely follow the concentration of traffic flows determined 
for the baseline condition shown in Figure 5.4(a). That is, the bridges with highest losses 
are located in the corridor connecting the Salerno and Vallo della Lucania municipalities. 
Moreover, the calculated losses are not necessarily concentrated on highway or primary 
roads and seem to be greatly influenced by the absence of nearby alternate routes. This 
confirms that the potential indirect loss associated with the collapse of a bridge is mainly 
dictated by the baseline traffic demands and redundancy of the network, independently of 
the road typology where the bridges are located. 

5.5 SIMPLIFIED METHODOLOGY PROPOSAL 

Given the complexity and amount of information that is required to perform the detailed 
quantification of economic indirect losses derived from the disruption of a bridge in the 
transportation network, a simplified approach, aimed towards decision-making purposes, 
is explored in this section to approximately match the relative importance of bridges in an 
inventory in terms of indirect loss, estimated as per the methodology presented in the 
previous section. This simplified methodology is based on the concept of travel impedance 
matrices, also referred to as network cost skims, which are a widely-used concept within 
the transportation planning field (Tian, Chiu, Sun, & Chai, 2020). An impedance matrix 
reflects the inter-zonal travel costs in terms of time, distance or custom cost functions that 
can be expected in a network. For the simplified methodology defined in the current study, 
a network skim based on travel time is used to describe the time that a single user would 
incur to travel each possible combination of centroids as points of departure and arrival in 
the uncongested network. 

For example, an illustrative network with three centroids, along with its respective travel 
time impedance matrix, is shown in Figure 5.9(a). In this case, each value in the matrix 
would represent the minimum time that a user would take to travel each combination of 
centroids. All diagonal elements in the matrix are zero values since intrazonal trips are not 
considered. Furthermore, the matrix is not symmetrical given that directionality is 
accounted for, meaning that the route and time required to travel from A to B (AB in the 
matrix) could be different than its reciprocal travel from B to A (BA in the matrix), 
depending on the network characteristics. The sum of all the values of the impedance 
matrix, defined herein as Baseline Vehicle Hours Travelled (BVHT), is used as a metric to 
evaluate the base conditions of the network when all bridges are operational. Furthermore, 
the exercise of deriving the skim matrix on the network when a specific bridge has been 
removed from the model and summing all values to define a Modified Vehicle Hours 
Travelled (MVHT) can be carried out to evaluate the impact that the absence of that 
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specific bridge will have on the network in comparison to the baseline conditions. An 
example is shown in Figure 5.9(b) where the removal of bridge i leads to increase the 
impedance of trips between zones B and C. 

 
(a) (b) 

Figure 5.9. Definition of proxy value in illustrative network: (a) Determination of baseline travel time 

with fully functional network, (b) Modified travel times by removing individual bridge 

 

After repeating the exercise of removing each bridge in the network and calculating its 
respective time skim, the algebraic difference between the MVHT of each bridge and the 
BVHT was defined as a proxy value, as shown in Equation 5.2, which can be used to 
comparatively evaluate the relative importance of each asset in terms of potential 
interruption time of the overall network: 

                                 𝑃𝑟𝑜𝑥𝑦 =  𝑀𝑉𝐻𝑇 − 𝐵𝑉𝐻𝑇   Equation 5.2 

where BVHT is the sum of all values from travel time skim matrix of the fully operational 
road network; and MVHTi is the sum of all values from travel time skim matrix of the road 
network after removing bridge i from the model. 

The main advantage of this simplified methodology is that it requires only basic 
information from the road network that is typically found in open-source repositories with 
near worldwide coverage, such as OpenStreetMap (OpenStreetMap contributors, 2020). 
Information regarding link properties, used to account for congestion, as well as travel 
demands between zones, are not necessary since there is no traffic distribution involved, 
which represents a great benefit, as this information is typically unavailable, incomplete or 
outdated. Moreover, the determination of the impedance matrices is usually a common 
output, available in most traffic modelling platforms, whose calculation does not require 
great computational effort.  
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5.6 CASE STUDY EVALUATION 

As described in the methodology adopted for this chapter, the proposed simplified 
alternative methodology was applied to the case study network in order to compare its 
performance with the benchmark detailed methodology calculation of indirect losses 
performed with the detailed methodology. The impedance matrix that represents the travel 
time of all possible trip combinations between each of the 158 municipalities in the case 
study was calculated using base conditions of the network, i.e., when all bridges are 
operational, and then repeated 617 times after removing each bridge in the network, as 
described previously. For each case, the sum of all values in the impedance matrix was used 
as a metric that was subtracted from the baseline case to define the proxy value. The results 
obtained for each bridge are shown in Figure 5.10.  

 
Figure 5.10. Proxy results obtained on the case study application 

 

It can be seen that, qualitatively, the spatial distribution of bridges with higher relative proxy 
values is similar to the one found by the determination of indirect losses shown previously 
in Figure 5.8, where the higher costs of interruption are located in the Western central 
portion of the case study, near the coast of Salerno. Furthermore, since the same 
interconnectivity between network nodes is present in all models, the simplified approach 
also captures the effect of bridges whose collapse results in the complete disconnection of 
some centroids, therefore being classified as essential. 
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In order to quantify the comparative performance of the simplified methodology, given 
that the proxy values and the indirect losses cannot be directly compared with each other, 
for being inherently different, the comparison was made in terms of the priority that is 
derived by ranking the bridges based on each parameter (higher loss and proxy value). 
Bridges classified as essential were placed in the first positions even though they have no 
associated numerical results for either parameter. However, their collapse results in the 
complete disconnection of centroids and this was given priority. The difference in the 
ranking positions obtained with the detailed methodology minus the ranking obtained from 
the simplified methodology is shown in Figure 5.11(a). Negative and positive values in this 
plot represent under and over prediction in priority, respectively, of the simplified 
alternative, when compared to the detailed methodology. It can be seen that, while the 
priority rank of some assets can be severely mispredicted by the simplified methodology, 
the bridges located in the in the corridor connecting the Salerno and Vallo della Lucania 
municipalities, which presented the highest calculated indirect losses, have rank-difference 
values close to zero, indicating an accurate prediction of their relative importance in the 
case-study portfolio. Furthermore, typical regression analysis of both rankings is shown in 
Figure 5.11(b), while the corresponding performance metrics are presented in Table 5.5. 
Performance metrics for comparison between indirect losses and proxy ranking on the case 
study, which were calculated by treating the simplified ranking as a regression of the 
benchmark ranking. It can be seen that using the proxy values to determine the priority of 
assets and comparing it to the one defined by the indirect loss results leads to encouraging 
results, producing a median absolute error of 50 positions, which represent roughly 8% of 
the total number of assets in the case study. 

(a) (b) 
Figure 5.11. Comparison of indirect loss and proxy-based ranking: (a) Prioritization rank difference 

(i.e. Indirect Loss-based rank – Proxy-based rank), (b) Comparison of priorities using both 

methodologies. 
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Table 5.5. Performance metrics for comparison between indirect losses and proxy ranking on the 

case study 

Parameter Value 
Root-mean-squared error (RMSD) 100.1 

Mean absolute error (MAE) 68.7 
Median absolute error (MedAE) 50.0 

Coefficient of determination (R2) 0.684 

 

Differences between the definition of bridge ranking can be partly attributed to the fact 
that, when using the detailed methodology to calculate indirect losses, bridges in corridors 
connecting municipalities with high traffic demands will naturally incur in higher disruption 
costs and will be therefore prioritized. On the other hand, for the case of the simplified 
alternative calculation of proxy values, all municipalities have equal relative importance, 
making it impossible to capture this traffic concentration effect that derives from the user 
demands. Nonetheless, the performance of the simplified alternative methodology in terms 
of defining disruption prioritization of bridge inventories represents a good compromise 
between accuracy, complexity and information demands, in line with the objective of 
providing an approximate prioritization for decision-making purposes. 

5.7 SUMMARY AND CONCLUSIONS 

In this chapter, a quantitative methodology to calculate bridge indirect losses was outlined 
and tested over a case-study network comprising 617 bridges in the Italian province of 
Salerno, which were used to create a road network model using open-source software and 
travel demand data from census information. Such data was used to determine reference 
values for the daily operational costs of the network in the baseline conditions and when 
removing each one of the bridges from the model. Information about the time required to 
restore a bridge was collected from recent Italian collapses to estimate a reasonable 
disruption duration and determine the total indirect loss of each bridge. Furthermore, as a 
simplified alternative methodology, aimed for decision-making purposes, the total delay 
that a single user would experience after removing each bridge from the model, travelling 
to and from all possible destinations on the uncongested network was used as a proxy to 
determine the priority of each asset based on their importance on the road network in terms 
of indirect losses. Finally, this proxy-based ranking was compared to the ranking obtained 
using the economic values obtained using the quantitative methodology to determine its 
performance. Based on the results obtained via the application of the two methodologies 
defined, the following conclusions can be drawn: 
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 The calculation of the economic impact of the disruption in a road network caused 
by the collapse of a bridge is technically challenging and requires a large amount 
of information about the properties of the network and the travelling demands of 
its users. However, it is necessary to quantify the relative importance that bridges 
have in the network in terms of their functionality, a component that should be 
included in decision-making strategies by bridge management agencies; 

 The quantitative methodology presented in this chapter to estimate indirect losses 
associated with the collapse of each bridge in an inventory has the ability to 
consistently and efficiently provide reference values of economic loss that can be 
used to gauge the impact of the disruption on the road network, caused by a bridge 
collapsing under any hazard. Nonetheless, the methodology is limited, since it 
excludes portions of the network and only accounts for a single mode of 
transportation, therefore, prospective users are advised to keep in mind the 
applicability of the methodology, which is intended for decision-making purposes; 

 Information regarding recent collapses in Italy was used to determine a 
probabilistic function for repair time of Italian bridges that indicates a median 
replacement duration of 710 days, which is much larger than the values used in 
past international research. Furthermore, repair times in Italy vary widely, with past 
collapsed bridges being replaced anywhere between 3 and 75 months, highlighting 
the large differences in the way different regions manage their inventories. This 
parameter has a direct impact in the total indirect losses expected and it is 
important that bridge management agencies implement procedures so that assets 
with high daily interruption costs can be replaced faster, thus reducing the overall 
losses; 

 The obtained indirect loss results indicate that these losses are governed by the 
baseline traffic demands and redundancy of the network, since most of the bridges 
with higher calculated costs were located in corridors between municipalities with 
high traffic demands and in portions of the network with fewer alternate routes. 
This is based on the results obtained from the case-study used in this research and 
future efforts should focus on evaluating the behaviour of indirect losses on 
different case-studies; 

 As far as the alternative simplified methodology is concerned, it does not provide 
estimates of economic loss, however, it is significantly easier to deploy for large 
inventories than previously proposed methodologies. Moreover, it produced 
prioritization results with an accuracy in the range of approximately ±10% (median 
absolute error of 50 positions in the ranking order for the case study of 617 
bridges), when compared to the ranking based on the detailed calculated indirect 
losses for each asset. This is considered appropriate for preliminary assessment of 
bridge importance in a decision-making context. 

 



 

 

6.RISK MANAGEMENT: PRIORITIZATION SCHEME 
FRAMEWORK 

6.1 INTRODUCTION 

The bridge inventory of developed countries can reach thousands of assets that have been 
built over several decades by different administrations (Calvi, et al., Once upon a Time in 
Italy: The Tale of the Morandi Bridge, 2019), creating a challenge for the institutions 
currently managing these large portfolios of bridges for which there is incomplete 
information about their current structural condition and limited resources available to 
upgrade or maintain them. In the case of Italy, a great portion of its current infrastructure 
was built during a construction surge of freeways that happened all over Europe in the 
1960s (Calvi, et al., Once upon a Time in Italy: The Tale of the Morandi Bridge, 2019). This 
coincided with a period in which the design codes of bridges referred to much lighter 
vehicular loads than the ones recommended for current traffic loading (Iatsko & Nowak, 
2021) and the consideration of extreme demands from natural events, such as earthquakes, 
was still in development. Furthermore, the longevity of the current inventory, aided by the 
difficulties of management agencies in providing proper maintenance, has led to a 
generalised problem of deterioration that increases the vulnerability of these structures, a 
condition that has become evident by the number of bridge collapses in recent years. 
Recent notable cases in Italy have attracted media attention to this problem, such as the 
collapse of the Morandi Bridge (Viadotto Polcevera) in Genova in August 2018, but many 
other collapses have happened in Italy with a non-negligible effect on the road system. For 
example, in the list of collapses collected from reports in the media presented in Chapter 5 
and detailed in Table 5.4, it can be observed that several months or even years can pass for 
a bridge to be reopened following its full or partial collapse. This considerably interrupts 
the network for an extended period, also impacting the local and wider community due to 
the loss of a potentially key element of the overall infrastructure system.  

Considering the situation described above, there is a real need for bridge management 
institutions to determine rapid prioritisation methods that, based on the limited 
information available about assets in the inventory, allow the identification of the assets 
requiring special attention in the form of inspection, detailed analysis, monitoring and 
possible retrofitting. Such prioritisation methodologies have been the source of multiple 
research efforts worldwide. A summary is available in a recent technical report by the 
United States Department of Transportation (Chase, Adu-Gyamfi, Aktan, & Minaie, 2016). 
It documents the evolution and application of different bridge health indices used by bridge 
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management agencies interested in preserving the condition of bridge structures or 
prioritising the maintenance or replacement projects within their bridge inventory. Mostly, 
these methodologies rely on element-level information of each bridge to assess its current 
state and service level; however, they typically fail to include aspects of resilience and the 
importance of each asset on the overall network that they form a part of.  Recent Italian 
examples include the simplified index-based methods developed by Pellegrino et al. (2011) 
and D’Apuzzo et al. (2019), both of which are based on detailed inspection-level 
information to assess the deterioration status of the bridges and combine it with the 
importance of each asset to the overall network by incorporating an additional index based 
on road typology and traffic flows. More recently, the Italian Superior Council of Public 
Works, within the Ministry of Infrastructure and Transport (MIT), issued a technical report 
with guidelines on risk classification and management, safety assessment and the 
monitoring of existing bridges (Consiglio Superiore dei Lavori Publici, 2020), which has 
already become part of the mandatory legislation for bridge management institutions and 
concessionaries in Italy (Ministero delle Intrastrutture e dei Trasporti , 2020). This 
document, which will be referred to from this point forward as the 2020 MIT Guidelines, 
intends to standardise the procedure with which existing bridges in Italy are assessed at a 
large scale by a multi-level and multi-component approach that classifies bridges in risk 
categories via a combination of qualitative metrics.  

Among most of the sources that deal with the prioritisation of bridges in a portfolio, there 
are similarities about the components that should be ideally included when determining the 
relative importance of assets and their urgency in attention:   

 Accounting for the demands deriving from multiple hazards such as: traffic loads, 
flooding, earthquakes and landslides; 

 The overall properties of the assets, such as: structural typology, dimensions, 
mechanical properties, cost of the infrastructure and its relative importance to the 
operation of the road network; 

 State of degradation, corrosion and overall expected performance of the bridge 
components when subjected to the considered hazards.  

While these components are generally included in the available proposals for simplified 
prioritisation in different ways, there is a difficulty in assessing their relative importance 
and, therefore, the way in which they are processed is typically defined by expert opinion. 
When looking for an established metric that allows the consideration of the entire scope of 
the problem in a single value, average annual loss (AAL) is a risk metric that has seen 
growing use within the structural engineering community (O’Reilly & Calvi, 2019) 
(Shahnazaryan & O’Reilly, 2021), even being proposed as a target metric to be used in new 
methods for structural design and assessment (Calvi, O'Reilly, & Andreotti, 2021). AAL, 
also referred to in some sources as expected annual loss (EAL), is a product of risk 
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assessment that represents long-term expected economic losses per year, averaged over 
many years, that are produced by specific hazards of varying intensities and their respective 
annual exceedance rates, or return periods. In this chapter, a seismic risk methodology is 
applied to the case study of 617 bridges in the Italian province of Salerno to determine 
prioritisation of assets based on AAL, which is then used for two main purposes: as a 
benchmark to compare with the results obtained using the recent 2020 MIT Guidelines 
and as a possible guiding parameter to determine the relative importance of each factor 
affecting the determination of priority, with a view to moving towards a more optimised 
but still simple prioritisation approach. 

6.2 METHODOLOGY 

The methodology defined for this chapter, depicted graphically in Figure 6.1, initially 
consisted of using the synthetic case study of 617 bridges presented in Section 2.1.4 to 
apply detailed risk assessment procedures, leading to the calculation of the AAL for each 
asset, thus creating a benchmark with which to evaluate different prioritisation 
methodologies and the influence of multiple parameters on the overall performance of the 
inventory.  

For this purpose, the characteristic hazard of the site of each bridge in the case study, as 
well as the earthquake records selected for each soil-zone combination previously described 
in Section 2.3.2, were considered and the numerical models created for each bridge using 
the BRITNEY modelling tool were analysed using the ground motion record set 
corresponding to the location of each asset to perform non-linear time-history analysis 
(NLTHA) and determine fragility curves for the collapse limit state of each case-study 
bridge. These fragility curves were integrated with the hazard curves of each site to obtain 
the annual probability of collapse of each bridge, which when can be multiplied by a 
replacement cost to derive AALs.  

To obtain a complete account of the AALs that can be attributed to the collapse of each 
bridge due to seismic hazard, both the direct replacement cost as well as the indirect cost 
of the bridge should be considered. As presented and exemplified in Chapter 5, while the 
direct cost can be taken as proportional to the deck area multiplied by an average 
construction cost value, the indirect counterpart requires an analysis of the transportation 
network to evaluate the economic loss that the users would incur because of the disruption 
caused by the collapse of each bridge. Once the total (direct and indirect) replacement costs 
of each asset were calculated, they were combined with the annual probability of collapse 
to determine an expected AAL for each bridge, defining an AAL database that can be used 
as a benchmark prioritisation metric. This database was then explored through data science 
methodologies, including a machine learning model, to gain insights on how some of the 
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simple features (e.g., span length, structural typology, pier height etc.) that are commonly 
available for each bridge can be used as indicators to approximate the AAL-based priority. 

 
Figure 6.1. Methodology used to understand the implementation of the recent 2020 MIT Guidelines 

and explore improvement options 

 

Finally, a comparison was made between the 2020 MIT Guidelines classification, the AAL-
based prioritisation and the insights obtained from the database and the machine learning 
model, in order to evaluate the 2020 MIT Guidelines and develop a more optimised 
proposal with the same level of simplicity of implementation but with improved overall 
accuracy, when compared with the AAL ranking. 

6.3 LOSS RESULTS 

6.3.1 Direct Loss Assessment 

The procedure to calculate direct seismic losses described previously in Chapter 4 for the 
research related to the Exposure component was repeated herein. In that sense, the collapse 
limit state fragility curves for each bridge in the database were calculated by NLTHA as 
described in Section 2.2.3 and shown in Figure 6.2 for reference. These fragility curves were 
combined with the seismic hazard at each site to determine an annual probability of 
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exceedance (APE), by evaluating the probability of exceedance in terms of the IML and 
the respective annual probability of exceeding that IML. The integration over the entire 
IML range results in the APE for each asset, as shown in Figure 6.3(a). As was previously 
considered in Chapter 4, the replacement cost for each bridge was taken as proportional to 
the deck area, considering a generic cost per square meter of €930, taken from the mean 
replacement cost per area obtained by Perdomo et al. (Perdomo, Abarca, & Monteiro, 
2020) for a similar Italian bridge inventory. The results for direct collapse-based AAL are 
show in Figure 6.3(b), where it can be observed that higher values of loss are concentrated 
in the areas with higher seismic hazard.  

 
Figure 6.2. Fragility curves for collapse limit state obtained for the 308 bridges in the database 

(a) (b) 
Figure 6.3. Results for direct loss assessment on the case study inventory: (a) annual probability of 

exceeding collapse limit state, (b) direct collapse-based average annual losses in Euros. 
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6.3.2 Indirect Loss Assessment 

In this case, the refined procedure to calculate indirect seismic losses described previously 
in Chapter 5 was repeated herein. In that sense, the road network of Salerno was analysed 
in its fully operational condition to determine a baseline daily operation cost, afterwhich, 
the analysis is repeated removing one-by-one each bridge in the network model, therefore 
determining the daily indirect cost that the collapse of each asset would incur on the overall 
network. This is multiplied by the median replacement time of 710 days, previously 
determined appropriate for the Italian context, to determine the total indirect loss 
associated to the occurrence of collapse for each bridge, results of which are shown in 
Figure 6.4(a) for the entire case study. By multiplying this indirect cost of collapse of each 
asset by the APE results shown in Figure 6.3(a), an indirect AAL is obtained for the entire 
inventory as shown in Figure 6.4(b). 

(a) (b) 
Figure 6.4. Indirect loss results: (a) indirect replacement cost, (b) results for indirect average annual 

losses. 

 

It can be seen that the indirect losses were concentrated near the coast of Salerno where 
the traffic is generally higher, even though the seismic hazard in this area was relatively low. 
This outcome can be seen as indicative that the monetary value that is incurred by the 
interruption of points of the road network for extended periods of time outweighs the 
lower seismic hazard for this case.  

As was mentioned previously in Chapter 5, it is important to note that some of the bridges 
in the case study that were located near the edges of the Salerno region did not produce 
indirect loss results when applying this methodology since their collapse resulted in no 
alternative paths, causing the complete disconnection of some of the centroids. This is a 
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limitation of the applied methodology since alternate routes are likely available when 
considering neighbouring parts of the road network as well as the residential roads that 
were excluded from the network model. To avoid this issue in future research, it is possible 
to either extend the network model beyond the limits of the case study regions or account 
for the costs of cancelled trips; however, for the purposes of the present study, the analysis 
will focus herein on the remaining 531 bridges that did produce indirect loss results with 
the methodology used.  

6.3.3 Total AAL Results Summary 

Once both direct and indirect loss components were determined, the total collapse-based 
AALs were aggregated for each bridge, resulting in the distribution shown in Figure 6.5(a). 
Analysing the overall results, it is seen that the indirect losses represent 78% of the total 
losses and that the overall losses have a very similar spatial distribution to the one found 
for the indirect losses alone, which is expected given that these are much greater than the 
direct loss component.  

It is important to note that, while the indirect loss component does seem to have a much 
larger contribution to the overall losses than the direct counterpart, the actual 78% estimate 
was obtained through the application of the methodology previously presented, 
considering all its assumptions and limitations. Changes in the repair time of assets, post-
disaster travel demands, accounting for more modes of transportation and the inclusion of 
the residential road network will undoubtedly have an impact on the results. However, it is 
outside the scope of this study to provide a definitive estimate of the indirect losses but 
rather to provide reference values for the purpose of aiding bridge management institutions 
in decision-making. 

  
(a) (b) 

Figure 6.5. Total average annual loss results: (a) total AAL results for case study inventory, (b) 

histogram of total AAL results. 
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It is also worth mentioning that a large portion of the losses are concentrated in very few 
assets. For example, from the histogram shown in Figure 6.5(b), only 9 bridges have loss 
values that are greater than €100,000 but overall, those bridges represent 42% of the total 
loss for the entire inventory. Such distributions in loss are mostly caused by the extreme 
values in indirect loss that were calculated for bridges that have a high traffic flow and very 
long and ineffective alternate routes. This is an important finding since bridge management 
agencies could use such indications to put measures in place for these assets, such as having 
fast-deploying temporary replacements ready to reduce the interruption duration and cost. 

 

6.4 MACHINE LEARNING PREDICTION OF AAL-BASED RANKING 

A supervised machine learning model was evaluated using the case-study AAL results 
presented in Section 6.3.3 to assess the feasibility of predicting losses based on limited data, 
and to gain insights on the effect and relative importance of simple bridge parameters on 
the prioritisation, defined by sorting bridges based on their individual AAL results. The 
intention of the machine learning modelling process is not to create a model to be used on 
bridges outside of the current case study, but to take advantage of the capabilities of this 
method to infer relationships between independent features (simple bridge parameters and 
reference hazard values in this case) and their impact on target values of interest (AAL 
estimates). It is envisaged that these can be later used to guide improvement proposals for 
the 2020 MIT guidelines. 

6.4.1 Model and Database Characteristics 

A random forest regression model was chosen given its recently demonstrated good 
performance when compared to other machine learning algorithms for similar applications 
(Mangalathu, Hwang, Choi, & Jeon, 2019), and the ability of this algorithm to evaluate the 
relative importance of each independent variable. This type of algorithm uses a collection 
of decision trees built with bootstrapped subsets of the main database, as depicted 
graphically in Figure 6.6. Each tree is fitted to provide predictions based on its sub-sample 
and all predictions provided by each tree are later averaged to improve the predictive 
accuracy and control overfitting. The relative importance of each independent variable is 
calculated by measuring their efficiency in decreasing the prediction uncertainty after each 
split of the branches in the tree, averaged over all trees in the forest. 

This type of model, as with most supervised machine learning models, uses a labelled 
dataset that has both its independent variables (inputs) as well as its outcomes, and 
progressively calibrates its own numerical properties to produce an inferred function that 
makes predictions about the output values. In order to calibrate the model and evaluate its 
performance on external data, the dataset is split into a training set, used to fit the model 
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properties, and a testing set used to appraise the fitted properties. The primary model 
settings were calibrated by running multiple parameter options. The values shown in Table 
6.1. Main parameters selected for the random forest implementation after calibration 
exercise performed on the testing set were chosen based on their improved prediction 
performance evaluated on the testing data set.  

 
Figure 6.6. Schematic representation of random forest algorithm prediction methodology 

 

Table 6.1. Main parameters selected for the random forest implementation after calibration exercise 

performed on the testing set 

Parameter Value 
Training/Testing split 90/10 
Number of estimators 40 
Maximum Tree Depth 8 

Maximum Features ඥ# 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
Minimum Leaf Samples 1 
Minimum Split Samples 5 

 

A database was assembled using the AAL results for each bridge in the case study to train 
the random forest model. For this purpose, the AAL representing the dependent variable 
(target) and a vector of independent variables (or features) was retrieved for each bridge 
structure. A set of six features were used for each bridge: maximum span length, maximum 
pier height, daily traffic flow, seismic intensity measure level for a return period of 475 
years, number of spans and total replacement cost. Given that all these variables that will 
be processed by the algorithm have different units and orders of magnitude, each was 
modified using a minimum-maximum scaling process that transforms the data of each 
feature by scaling the values within the 0 and 1 range. The resulting database consists of 
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531 data rows, one for each bridge for which indirect loss results were available. It is 
important to note that the database created is relatively small for a regression problem, 
therefore the reader is encouraged to keep in mind that the model performance will be 
affected by this size limitation.  

6.4.2 Model Performance and Insights 

The evaluation of the regression model on the training and testing sets is presented in 
Figure 6.7, along with the relative feature importance, and a set of useful regression 
performance metrics is presented in Table 6.2. In general, the model does not have an ideal 
prediction performance, which is to be expected given the small amount of data points and 
features used to attempt to predict a complex value such as AAL, which depends on 
multiple variables that cannot be included in this type of model in a straightforward 
manner. 

 
           (a)            (b) (c) 

Figure 6.7. Performance of the machine learning model on the database: (a) feature importance, (b) 

performance of the model on the training set, (c) performance of the model in the testing set. 

 

Table 6.2. Performance metrics for the machine learning model on the entire dataset 

Parameter Value 
Root-mean-squared error (RMSD) € 52,279.8 

Mean absolute error (MAE) € 10,888.2 
Median absolute error (MedAE) € 3,398.4 

Coefficient of determination (R2) 0.542 
Total AALpred / AALcalc 0.962 

 

Also, in global terms, when considering the total annual losses aggregated for the entire 
inventory, the model exhibits a good performance, predicting a value that is 96% of the 
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actual calculated value, however, on the individual asset side, the model tends to 
overpredict the loss values for most of the elements in the case study, as seen in Figure 6.8. 
The underprediction in the global results contrasts with the overprediction on the 
individual side, however, this is explained by the fact that the expected losses for the entire 
inventory are governed by outlier assets that exhibit very high values of AAL. When 
calculated, these AAL values are not accurately predicted by the model since they are 
represented in the database by very few points, challenging the training of the model in this 
extreme range.   

Overall, in terms of model performance, daily traffic flow has the highest relative 
importance over all the evaluated features, which is a consequence of the fact that the 
indirect losses represent the majority of the losses calculated and are directly related to the 
daily traffic. Moreover, maximum pier height was found to be the second most relevant 
feature when trying to predict AAL, which is a parameter that is not currently accounted 
for in the 2020 MIT Guidelines and has been shown to have a correlation with the dynamic 
properties of bridges in previous studies (Zelaschi, Monteiro, & Pinho, 2016). The 
maximum span length, which has a great impact in the risk classification of the 2020 MIT 
Guidelines, as will be shown in the following section, has the lowest relative importance as 
per the machine learning model exercise implemented. 

 
 

(a) (b) 
Figure 6.8. Machine learning model results: (a) predicted AAL results for case study inventory, (b) 

histogram of calculated and predicted results. 

 

Using the predicted values to determine the priority of assets and comparing it to the one 
defined by the AAL results actually calculated leads to encouraging results, as shown in 
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Figure 6.9. The application of the model to only define the relative priority of assets in the 
portfolio produces a median absolute error of 54 positions, which represent roughly 10% 
of the total number of assets in the case study. 

 
Figure 6.9. Comparison of prediction prioritisation with benchmark 

 

6.5 ITALIAN GUIDELINES FOR BRIDGE PORTFOLIO ASSESSMENT 

The 2020 MIT Guidelines propose a multi-level and multi-component approach that 
classifies bridges in risk categories through the processing of qualitative metrics, specific to 
each of the considered hazards: a) structural/foundational, including eventual degradation; 
b) seismic; and c) flood/landslide. These guidelines have been recently analysed and 
evaluated by Santarsiero et al. (2021), where a thorough summary of the entire classification 
methodology is presented. In such study, the simple application of the seismic and 
degradation components of the guidelines to an inventory of 48 bridges concluded that the 
obtained classification leads to conservative results.  

In the study presented herein, the focus will be only on the treatment of the seismic risk 
classification of bridges, since it is the only component for which the benchmark AAL 
calculations performed in the previous sections is applicable for comparison. For what 
concerns seismic risk, as with the other considered risk types, the procedure is divided in 
the three well-known main components: a) hazard; b) exposure; and c) vulnerability, each 
of which being assigned one of five possible attention levels that range from low to high. 
This is done by processing qualitative characteristics of each bridge using a specific set of 
tabular values, as described in the following paragraphs. After each risk component is 
processed and a classification is made, all components are convoluted into an overall 
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seismic risk attention class. In general, the classification of each of the components of risk 
is determined by a preliminary class, assigned by the qualitative evaluation of primary 
parameters that can be further altered by secondary parameters. These may increase or 
decrease the preliminary classification within the available five classes. The rules for the 
assignment of the preliminary classes per component are summarised in Table 6.3, Table 
6.4 and Table 6.5 for the hazard, exposure and vulnerability facets, respectively.  

It is also important to note that structural degradation determined from inspections, 
availability of alternate routes and the consideration of a bridge as strategic, are also 
parameters used to alter the classification of a bridge according to these guidelines. These 
parameters are not included in the tables shown here or in their application to the case 
study, since this information was unavailable.  

Table 6.3. 2020 MIT Guidelines’ seismic risk classification – hazard 

PGA  
(10% @ 50 years) 

Topography Soil type 

T1, T2, T3 T4 A, B C, D, E 

0.05 - 0.10 Low Medium-Low +0 +1 

0.10 - 0.15 Medium-Low Medium +0 +1 

0.15 - 0.20 Medium Medium-High +0 +1 

0.20 - 0.25 Medium-High High +0 +1 

>0.25 High High +0 +1 

 

Table 6.4. 2020 MIT Guidelines’ seismic risk classification – exposure 

Max Span 
Length 

(m) 

Daily Traffic (vehicles) Overpass 

< 10000 10000-25000 > 25000 Roads Rivers Depressions 

< 20 Low Medium-Low Medium +1 +0 -1 

20 - 50 Medium-Low Medium Medium-High +1 +0 -1 

> 50 Medium Medium-High High +1 +0 -1 

 

Table 6.5. 2020 MIT Guidelines’ seismic risk classification - vulnerability for RC bridges 

Spans 
Max Span Length (m) Static System Seismic Design 

< 20m > 20m Hyperstatic Isostatic Yes No 

Single Low Medium-Low +0 +2 +0 +1 

Multiple Medium-Low Medium +0 +2 +0 +1 
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Once each component has been characterised, they are combined to determine an overall 
seismic risk class, as per the indications shown graphically in Figure 6.10. As noted by 
Santarsiero et al. (2021), the overall classification is very much affected by the vulnerability 
component; for example, if this component is high, then the seismic risk class will be 
assigned the highest category, almost regardless of the other components. 

 
Figure 6.10. Determination of seismic risk class based on the partial classification of hazard, 

exposure and vulnerability, adapted from Santarsiero et al. (2021) 

 

The methodology foreseen by the guidelines was applied to the case study inventory, 
providing the results shown in Figure 6.11. It can be seen that both the hazard and 
vulnerability components are mostly classified in the highest possible option, leading to an 
overall seismic risk class with mostly the high category. This is attributed to the fact that 
the vulnerability component dominates for simply supported bridges with spans longer 
than 20m that have not been seismically designed, which correspond to the predominant 
characteristics in the case study and to a large portion of the Italian bridge stock. 

The obtained seismic category class is compared with the priority AAL rank, defined by 
sorting the values of AAL in an increasing ranked fashion. The bar plot in the bottom right 
corner of Figure 6.11 shows the seismic classification in the vertical axis (with values 1 
through 5 representing low to high categories, respectively) while the AAL-based ranking 
of the 531 bridges in the case study is located in the horizontal axis. The assets with the 
highest total AAL results are plotted in the first (left) positions. Consequently, if the 2020 
MIT Guidelines classification were in complete agreement with the AAL ranking, the 
bridges with higher risk categories would all be located on the left of the plot and the overall 
shape of the plot would have a descending trend.   
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While the classification does seem to group the high and medium-high risk categories 
mostly in positions that are in agreement with the AAL-based ranking, the fact that there 
are only two resulting categories and the predominance of the high class creates a problem 
for the effective implementation of these guidelines as a tool for efficient decision-making 
and resource prioritisation. As per the 2020 MIT Guidelines, 498 bridges from the 531 in 
the inventory that were classified into the high category would require the immediate 
development of detailed structural analysis, implementation of periodic inspections and the 
installation of monitoring systems. This would clearly require a great number of resources 
to comply with and be, in some respects, not fulfilling the need of being able to prioritise 
effectively. 

 
Figure 6.11. Results for application of 2020 MIT Guidelines to case study inventory 

 

6.6 DIRECTIONS FOR IMPROVEMENT OF PRIORITIZATION SCHEME 

Using the insights gained by the application of the seismic risk quantification to the case 
study, along with the influential features found via machine learning techniques, a possibly 
improved methodology to perform bridge prioritisation, based on the 2020 MIT 
Guidelines and their observed performance, is outlined and discussed here. 
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In general, the 2020 MIT Guidelines constitute a robust and well-structured methodology 
for bridge management. Addressing risk as a convolution of each its three components, as 
well as the possibility to include multiple hazards, is innovative since it allows for the 
disaggregation of the risk classification to identify problematic areas and consequently aid 
in the immediate intervention and retrofitting decision making. The shortcomings that were 
observed during its implementation are specifically related to the thresholds used to 
characterise each of its components in a simple and schematic manner, as well as the high 
relative importance that the vulnerability component has on the overall risk class. While 
this conservatism in the vulnerability component was likely a conscious decision made to 
prioritise bridge safety, it has the downside of classifying a large number of bridges, even 
those with low associated losses, in the categories of highest priority, which is not in 
agreement with the findings from a complete quantitative exercise based solely on 
economic losses. Furthermore, the definition of only five risk classes creates an additional 
limitation since it can be restrictive when a large, thus more diverse, inventory is considered. 
For example, as in the results obtained after the classification of the adopted case study, if 
a large number of assets is classified into a single category, the 2020 MIT Guidelines 
provide no indication on how they can be further prioritised so that bridge management 
institutions can efficiently allocate their resources in implementing the monitoring and 
required explicit analysis actions.  

In order to potentially improve the results obtained by the application of the guidelines, 
the definition of fixed risk classes could be, for instance, changed to an approach based on 
a point system per component without establishing a limit. The overall seismic risk score 
would then be composed of the sum of the scores of each component with the available 
number of points per component being defined as proportional to the findings from the 
machine learning model, by giving a higher importance to the exposure component and 
the daily traffic flows, in order to further stress the importance of the indirect losses. In 
terms of the hazard component, the current thresholds values available in the guidelines 
are low in comparison to the seismic potential in the Italian territory according to the 
hazard model used (Woessner, et al., 2015). Therefore, the values could be updated as 
shown in Table 6.6 to be more applicable to case-study areas of high seismicity according 
to the hazard model used.  

Table 6.6. Proposed modified seismic risk classification - hazard 

PGA  
(10% @ 50 years) 

Topography Class Soil type 
T1, T2, T3 T4 A, B C, D, E 

< 0.10 1 2 +0 +1 
0.10 - 0.20 2 3 +0 +1 
0.20 - 0.30 3 4 +0 +1 
0.30 - 0.40 4 5 +0 +1 

> 0.40 5 5 +0 +1 
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Regarding the exposure component, the thresholds for span lengths could be modified to 
reduce the impact of this parameter on the overall results. Also, traffic flows would be 
reduced to increase its sensitivity, given that this parameter was observed in Section 6.4.2 
to be the most influential in the determination of annual losses. Furthermore, to provide 
more importance to the overall component, the total amount of awardable points would 
increase as shown in Table 6.7.  

Table 6.7. Proposed modified seismic risk classification - exposure 

Max Span 
Length (m) 

Daily Traffic Overpass 
<4000 4000-10000 > 10000 Roads Rivers Depressions 

< 25 1 +3 +5 +1 +0 -1 
25 - 40 2 +3 +5 +1 +0 -1 
> 40 3 +3 +5 +1 +0 -1 

 

For what concerns the vulnerability component, the threshold values for number of spans 
and maximum span length could be updated as per Table 6.8, which were calibrated by 
iterating on different values and observing their effect in the classification performance 
with respect to the AAL ranking. Furthermore, the maximum pier height would be included 
as an additional parameter since it was recognised as a relatively important feature during 
the machine learning experiment, shown in Figure 6.7(a). 

Table 6.8. Proposed modified seismic risk classification - vulnerability 

Spans 
Max Span Length 

(m) Static System 
Seismic 
Design 

Max Pier Height 
(m) 

< 30m > 30m Hyperstatic Isostatic Yes No < 15 > 15 
< 3 1 2 +0 +1 +0 +1 +0 +1 

3 - 10 2 3 +0 +1 +0 +1 +0 +1 
> 10 3 4 +0 +1 +0 +1 +0 +1 

 

Adopting the described modification proposals, the proposed modified methodology was 
applied to the same case study, leading to the results shown in Figure 6.12. It can be 
observed that there is a higher resolution of results for each of the components (i.e., no 
saturation with the high limit), which also translates in a wider range of risk scores for the 
overall inventory. The spatial distribution of the scores is more in agreement with the loss 
results and the overall prioritisation performance appears greatly improved with respect to 
the outcomes of the original guideline’s methodology. 
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Figure 6.12. Results for the proposed modified seismic risk classification’s prioritisation 

 

It is important to note that, while the definition of the case study and its properties were 
designed to be considered as representative of a common typology of the bridge network 
of Italy, the proposed methodology was made by calibrating values from the available 
database therefore its applicability would be limited to real case databases that would be 
created following the same methodology as the one used herein, particularly in terms of 
road network modelling. 

6.7 SUMMARY AND CONCLUSIONS 

In this chapter, a synthetic case study of 617 bridges in the province of Salerno, Italy, was 
generated by sampling from a database of 308 bridges with complete information and was 
used to perform seismic risk assessment considering direct and indirect loss economic 
losses. The resulting database of collapse-based average annual losses (AAL) was explored 
using data science techniques to determine the influence of simple bridge parameters on 
the calculated losses and associated priorities, to ultimately use these insights to evaluate 
and propose improvements to the recent guidelines on risk classification and management, 
safety assessment and the monitoring of existing bridges (Consiglio Superiore dei Lavori 
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Publici, 2020) - 2020 MIT Guidelines. The application of the described methodology led 
to the following conclusions, regarding the prioritisation of bridge assets within a regional 
portfolio, even with limited information available: 

 When data and analysis resources are available to consider both direct and indirect 
components of loss, AAL can be considered an alternative or complementary 
metric by which assets within a bridge portfolio can be prioritised in terms of 
resource allocation, inspection and retrofitting; it was seen here that this metric 
combines the vulnerability of each bridge, as well as the importance that each 
element has within the entire road network system in a single decision variable;   

 Overall, it is concluded that indirect losses have a higher economic impact on the 
system when compared to direct losses. Given the complexity in their nature, the 
order of magnitude of this difference depends heavily on the assumptions made 
during the assessment process, such as using a single transportation mode, median 
repair times and excluding the residential road system; however, the large 
difference observed herein is expected to increase when considering all 
transportation modes; 

 When evaluating the influence of commonly available variables in the results of 
total AAL, it was seen that daily traffic flow, which is related to the exposure 
component, seems to have the higher relative importance, in comparison to other 
bridge structure-specific metrics. This result appears reasonable, given the high 
contribution of the indirect component of loss to the overall results;  

 When evaluating the 2020 MIT Guidelines that have recently been published in 
Italy, it was observed that the application of the methodology leads to large 
portions of the inventory classified to the highest-risk available category, creating 
a challenge in terms of its usefulness as an efficient way to classify bridge priorities 
and resource allocation. Different reasons can be cited for this effect, such as the 
limited availability of possible categories and the high importance placed on the 
vulnerability component that uses somewhat conservative thresholds for its 
classification, such as the restrictive 20m maximum span length limit; 

 Using the insights gained by the analyses made, possible directions for an 
improved prioritisation methodology were drawn and discussed based on 
modifications made to the current 2020 MIT Guidelines. While further scrutiny 
and additional case studies are needed, such a modified prioritisation scheme 
performed better, when compared to a benchmark classification analytically based 
on AAL.  

 

 





 

 

7. OVERALL CONCLUSIONS AND FUTURE 
DEVELOPMENTS 

7.1 CONCLUSIONS 

Regional seismic risk assessment of bridge portfolios has gained popularity in recent years 
as an effective tool for decision-making, one that is generally seen favourably by 
practitioners and stakeholders to quantify the expected performance of infrastructure 
inventories. However, many setbacks exist in the practical application side, which can lead 
the team performing the analysis to make decisions that will ultimately have an unknown 
impact on the final results of the project, for which there is little existing technical 
background or precedent. In this thesis, an extensive database of existing bridges in Italy 
was used to create large case studies and perform state-of-the-art seismic risk assessment, 
with the intention of evaluating some of the traditional and innovative decisions that are 
made in each stage of the analysis, thus quantifying their impact and making 
recommendations regarding best practices in each component. In the following, the main 
conclusions drawn from the research performed will be outlined, however, in addition to 
the full account of conclusions drawn in each of the main chapters in this thesis. 

In terms of the hazard component:   

 In the subject of choosing an appropriate intensity measure to use for the seismic 
assessment of bridge portfolios, the recently introduced option of average spectral 
acceleration (AvgSa) performs better than the traditional choice of peak ground 
acceleration (PGA), as its results have an overall lower dispersion while incurring 
in no actual additional difficulty for its implementation.  

In terms of the exposure component:  

 The use of taxonomy-based fragility curves does lead to overall median direct loss 
results that are accurate over the entire inventory analysed. However, depending 
on the amount of information that was used for their calculation, they induce an 
epistemic uncertainty (in terms of portfolio and network model knowledge) in the 
results that should be accounted for and properly communicated to the 
stakeholders.  

 As a practical recommendation, it seems that the detailed knowledge of at least 
30% of the inventory makes sense, since after this point the reduction of the 
uncertainty is less significant. The alternative use of machine learning models to 
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assign fragility curves to bridges with incomplete information seems to become 
attractive only when considerable portions of the inventory are known (at least 
50%); their use does incur in an additional difficulty in comparison to the 
taxonomy-based approach. 

In terms of the vulnerability component: 

 The analysis performed in this thesis indicates that the indirect losses incurred by 
the users of a road network, associated to the collapse of bridges, seem to exceed 
the direct losses by a factor of at least 4:1. This is considered a conservative 
estimate since many factors were not included in the analysis; therefore, it has been 
confirmed that the consideration of the indirect component of loss is paramount 
in all regional risk assessments of bridges. This is even if their implementation does 
lead to an important increase in information and technical expertise demand.  

 A simplified approach to approximate the relative importance of each bridge on a 
road network in terms of indirect losses was presented in this thesis. This method 
performs well, is independent of the potential hazard and has relativelly low 
information and technical demands; therefore, can be included as a minimum 
requirement on risk assessment of bridges in road networks for multiple hazards. 

In terms of prioritization of bridges for an efficient resource allocation: 

 When the information and resources are available to perform a full seismic risk 
assessment, the use of average annual losses (AAL) can be considered as an 
appropriate metric by which to perform a prioritization of the assets in the 
inventory, as it includes in its definition most of the elements desired for this 
purpose in a single decision variable. 

 When resources are limited, as is usually the case, a simplified prioritization 
methodology can be defined by obtaining discreet features for each asset in the 
inventory and processing them considering their relative importance. An example 
of such methodology was presented in this thesis considering only the seismic risk 
component, which produced adequate results in comparison to an AAL-based 
benchmark.  

 The methodology presented recently by the Italian Ministry of Sustainable 
Infrastructures and Mobility as guidelines for bridge administration institutions to 
perform prioritization of their assets, was demonstrated to produce overly 
conservative results that can present difficulties during its practical 
implementation, as they tend to classify most bridges to the highest category of 
risk.     
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7.2 FUTURE DEVELOPMENTS 

During the development of this thesis, the following subjects were identified as important 
candidates for research, but were either out of the scope defined, or lacked the sufficient 
resources to persue them. Therefore, they are recommended to be considered in future 
research efforts and are listed as follows: 

 While AvgSa seems to perform well in terms of efficiency and its use is 
recommended for the assessment of bridge portfolios, research should be 
performed to properly define the period range that should be used for both 
individual and groups of bridges. Even though there is a precedent for the rationale 
used in this thesis to define the range, and its use did lead to satisfactory results, 
no specific study for the definition of the range has been made to date, leaving 
each particular study open to their own interpretation and preference. It is noted 
that this flexibility in period range definition is also an advantage in some cases, 
but for practical implementation and user guidance focused on here, some 
indications should be pursued. 

 The analysis made to evaluate the uncertainty induced by lack of exposure 
knowledge should be repeated to other, possibly larger, case studies to determine 
if the findings made herein remain valid for other cases, regions and bridge 
typologies. 

 Even though the general typology of bridges used in this thesis (i.e. multi-span 
reinforced concrete bridges) represents the majority of bridges in the inventory of 
most countries, future research should be devoted to repeat some of the analysis 
made herein to other typologies such as steel, arch and cable stayed bridges, which 
have an important representation in some country’s portfolios.  

 More research should be performed in the field of indirect losses of bridge 
portfolios, to clearly quantify its full relative importance and hopefully aid in the 
development of digital tools, libraries and resources to make their consideration 
more feasible to risk assessment endeavours involving bridge inventories.  

 It is considered imperative to perform research on the effect of ageing 
deterioration in conjunction with increased gravitational loads in bridges, which 
seems to be a likely cause of collapses observed in Italy in recent years. While many 
challenges exist to accurately characterize this phenomenon, it represents a 
predicament that will continue to grow more problematic if unattended. 
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