Ground motion model (GMM) for directional inelastic spectral displacements

<u>Savvinos Aristeidou</u>¹, Gerard J. O'Reilly¹, Karim Tarbali²

1 – Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
2 - University of Paris-Saclay, CentraleSupelec, Gif-sur-Yvette, France

Centre for Training and Research on Reduction of Seismic Risk

Introduction

- Intensity measure (IM) \rightarrow links seismological conditions with engineering demands
- Ground motion models (GMMs) provide the probability distribution of an IM at a site, given underlying seismic hazard conditions
- Ground motions (GMs) can then be selected and scaled to match that IM distribution → and then use them for nonlinear response history analysis (NRHA) of structures
- Inelastic spectral displacement (Sd_i) can be an effective IM, under certain conditions
- Novel horizontal component definition for Sd_i: RotD50 and RotD100
 - o 'RotDnn' denotes the nnth percentile of IM from all rotation angles sorted by amplitude
 - $_{\odot}\,$ 'D' denotes that it's dependent on the vibration period
- Sd_{i,RotD100}/Sd_{i,RotD50} can be a more informative directionality measure, extended from Sa_{RotD100}/Sa_{RotD50} which is the most common measure of GM directionality
- This $Sd_{i,RotD100}/Sd_{i,RotD50}$ can be also considered as a secondary IM

Luco and Cornell (2007)

Boore (2010)

Shahi and Baker (2014)

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali ICASP14, Dublin, Ireland 9-13 July 2023

Ground motion directionality

- GMs include three translational and three rotational components (total: 6 components)
- Typically, rotational components are neglected, and vertical component receives much less attention than the horizontal ones
- Need to account for horizontal shaking in all orientations: when selecting and scaling GMs (with an IM that accounts for that), but also when applying them to structures

Baker, Bradley & Stafford (2021) – Section 4.2.6

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali ICASP14, Dublin, Ireland 9-13 July 2023

ICASP14, Dublin, Ireland 9-13 July 2023

ICASP14, Dublin, Ireland 9-13 July 2023

ICASP14, Dublin, Ireland 9-13 July 2023

Directionality model for inelastic displacements

		R = 2					
	T [s] τ	φ	σ	$\ln(Sd_{i,RotD100}/Sd_{i,RotD50})$	Sd _{i,RotD100} /Sd _{i,RotD50}	
$\mathbb{R}^{2.75}$ SB14 $\mathbb{R}^{0.6}$ $M_{\rm H} = [5-8]$	0.04	0.099	0.306	0.321	0.651	1.917	
$\vec{z} = 2.50$ $\vec{R}_{rup} = [0.300] \text{ km}$	0.06	0.079	0.334	0.344	0.679	1.973	
\mathcal{S} $\mathcal{R} = 1.5$ \mathcal{S} $\mathcal{S}^{0.3}$	0.1	0.044	0.333	0.336	0.581	1.788	
$R = 2$ $\beta_{0,4}$	0.2	0.040	0.249	0.252	0.397	1.487	
$\frac{g}{R} = 3$ $\frac{g}{R} = 3$	0.3	0.023	0.196	0.197	0.339	1.404	
\overrightarrow{S}_{1}	0.5	0.012	0.150	0.150	0.307	1.360	
$rac{1}{5}$	0.75	0.006	0.130	0.130	0.295	1.343	
	1	0.007	0.130	0.130	0.292	1.339	
	1.5	0.011	0.122	0.123	0.284	1.328	
	2	0.009	0.125	0.125	0.287	1.333	
0 10^{-1} 10^{0} 10^{-1} 10^{0}	3	0.021	0.137	0.138	0.291	1.338	
Period T[s]	4	0.019	0.130	0.131	0.292	1.339	
	5	0.015	0.121	0.122	0.287	1.332	

Shahi and Baker (2014) — Directionality model for Sa_{RotD100}/Sa_{RotD50}

Aristeidou, Tarbali, and O'Reilly (2023) \longrightarrow Directionality model for $Sd_{i,RotD100}/Sd_{i,RotD50}$

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali ICASP14, Dublin, Ireland 9-13 July 2023

Functional form of GMM

$$\ln Y_{i,j} = a + F_M + F_D + F_{sof} + F_s + F_{basin} + \eta_i + \varepsilon_{i,j}$$

Sd_{i,RotD50} or Sd_{i,RotD100}

- a: Model scaling coefficient
- **F_M:** Magnitude scaling term
- **F**_D: Distance attenuation term
- F_{sof}: Style of faulting term
 - F_s: Site amplification term
- Fbasin: Basin effects correction term
 - η_i : inter-event residual
 - $\varepsilon_{i,j}$: intra-event residual

Predictor seismological parameters:

- *M_w*: Moment magnitude
- *R_{rup}*: Rupture distance

Fault Discretised into 3 faulting styles: strike**mechanism:** slip, normal and thrust fault

- $V_{s,30}$: Time-averaged soil shear-wave velocity to 30 m depth
- **Z**_{2.5}: Depth to the 2.5 km/s shear-wave velocity horizon (basin proxy)

18 model coefficients calibrated for each elastic vibration period, *T*, and strength ratio, *R*

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali

GMM performance

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali ICASP14, Dublin, Ireland 9-13 July 2023

- Only a few available models that have strength ratio, *R*, as input. A few of them have ductility demand, μ, or strength coefficient, C_y
- Two models from the literature were compared herein
- Median prediction of the proposed GMM matches well the cloud median

Huang, Tarbali and Galasso (2020): HTG20

Tothong and Cornell (2006): TC06

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali ICASP14, Dublin, Ireland 9-13 July 2023 10

- Only a few available models that have strength ratio, *R*, as input. A few of them have ductility demand, μ, or strength coefficient, C_y
- Two models from the literature were compared herein
- Median prediction of the proposed GMM matches well the cloud median

Huang, Tarbali and Galasso (2020): HTG20

Tothong and Cornell (2006): TC06

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali ICASP14, Dublin, Ireland 9-13 July 2023

- Only a few available models that have strength ratio, *R*, as input. A few of them have ductility demand, μ, or strength coefficient, C_y
- Two models from the literature were compared herein
- Median prediction of the proposed GMM matches well the cloud median

Huang, Tarbali and Galasso (2020): HTG20

Tothong and Cornell (2006): TC06

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali ICASP14, Dublin, Ireland 9-13 July 2023

- Only a few available models that have strength ratio, *R*, as input. A few of them have ductility demand, μ, or strength coefficient, C_y
- Two models from the literature were compared herein
- Median prediction of the proposed GMM matches well the cloud median

Huang, Tarbali and Galasso (2020): HTG20

Tothong and Cornell (2006): TC06

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali ICASP14, Dublin, Ireland 9-13 July 2023

Variability in the GMM

- The proposed model gives lower standard deviations for most periods when comparted to TC06 and HTG20
- RotD50 component slightly reduces the dispersion in comparison to the arbitrary component used by TC06 and to the geometric mean used by HTG20
- HTG20: difference mainly due to intra-event, which is a product of considering spatial correlation

Beyer and Bommer (2006)

Jayaram and Baker (2010)

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali ICASP14, Dublin, Ireland 9-13 July 2023

Conclusions

- GMM developed to estimate the RotD50 and RotD100 horizontal component of Sd_i from shallowcrustal earthquakes
- Used substantially large dataset of GMs from NGA-West2 database
- Does not require any auxiliary elastic GMM to predict the median and dispersion of inelastic displacements
- <u>Range of applicability</u>: 5 < *M*_w ≤ 8; 0 < *R*_{rup} ≤ 300 km; 90 ≤ *V*_{s,30} ≤ 1300 m/s; 0.04 ≤ *T* ≤ 5 s; 1 ≤ *R* ≤ 6; tectonically active shallow crustal regions
- Model exhibits good performance and reasonably low dispersions, compared to similar models available in literature, and they are not sensitive to the level of non-linear demand
- Proposed directionality models based on Sd_i, given in the journal paper, can be used
- Directionality can be also estimated from the GMM itself, using the different available horizontal component definitions

• Aristeidou, S., K. Tarbali, and G. J. O'Reilly. 2023. "A ground motion model for orientation-independent inelastic spectral displacements from shallow crustal earthquakes." Earthq. Spectra, 0 (0): 1–23. <u>https://doi.org/10.1177/87552930231180228</u>.

• Aristeidou, S., G. J. O'Reilly. 2023. "Exploring the use of orientation-independent inelastic spectral displacements in the seismic assessment of bridges." Under review.

GMM for directional inelastic spectral displacements Savvinos Aristeidou, Gerard J. O'Reilly, Karim Tarbali ICASP14, Dublin, Ireland 9-13 July 2023

ICASP14, Dublin, Ireland 9-13 July 2023