Displacement-based risk-targeted design of base-isolated structures

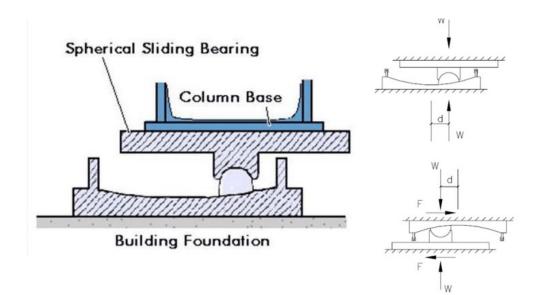
<u>Gerard J. O'Reilly</u>¹, Satoshi Sakurai², Yoshitaka Suzuki², Gian Michele Calvi¹, Masayoshi Nakashima²

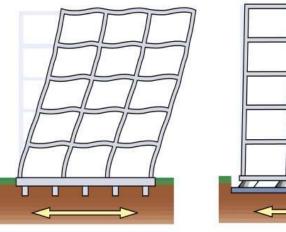
¹Scuola Universitaria Superiore IUSS, Pavia, Italy

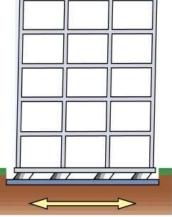
²Kobori Research Complex (KRC), Kajima Corporation, Tokyo, Japan

Centre for Training and Research on Reduction of Seismic Risk

Overview

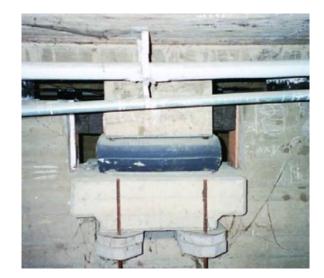

- Base isolation systems and design of isolators
- Potential issues encountered in practice
- Friction pendulum bearing systems
- Risk-based design procedure formulation
- Case study example




Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

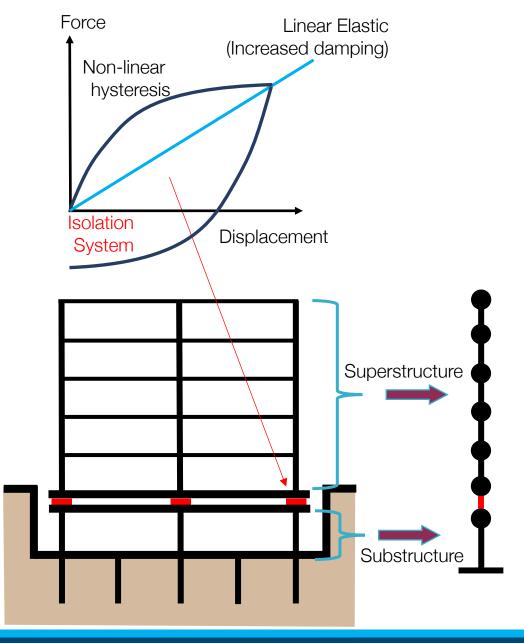
Base isolation systems

- Base isolation gained popularity in the 1960s, with the first use on a school in Skopje
- The 1980s saw the development of the friction pendulum bearing (FPB) system



Conventional Structure

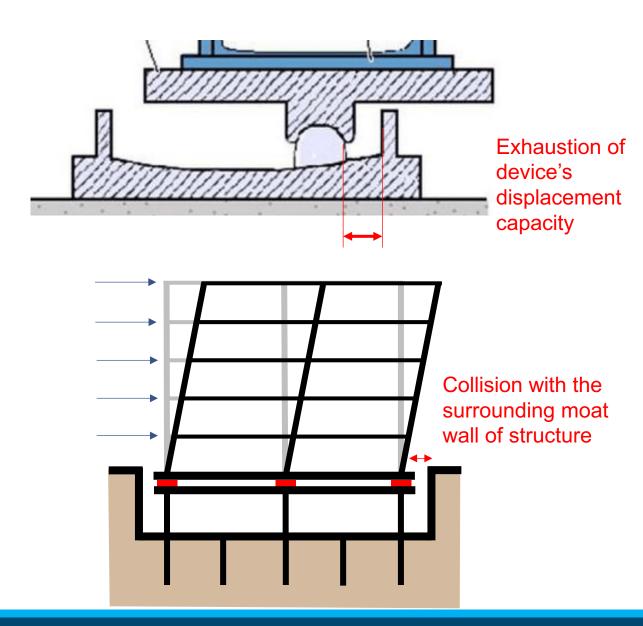
Base-Isolated Structure



Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

Design of isolators

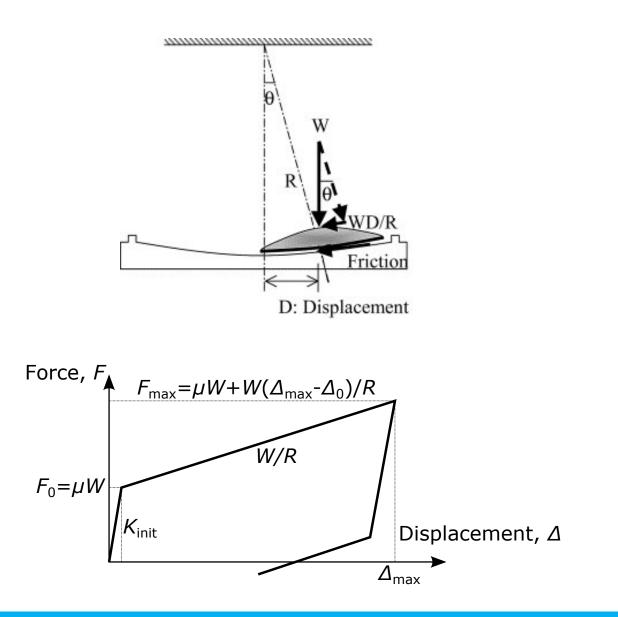
- Several codes of practice exist worldwide, each following more or less the same procedure
- An isolator bearing is trialled and can be modelled:
 - Non-linear hysteretic behaviour
 - · Linear springs with increased damping
- Superstructure and substructure are to be modelled as linear elastic with non-dissipative behaviour
- The response at a given shaking intensity is checked to determine the suitability
- At the life safety limit state, Italian building requires isolators to withstand all demands without issues
- Analysis is trial and error with numerical analysis
 required to check result



Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

Potential issues

- The difficulty with this intensity-based approach to design is that it verifies performance at a specific hazard level
- It doesn't give any comprehensive control of overall risk
- Devices may perform quite poorly at levels of shaking different than those they were design for
- In particular:
 - Device reaching its maximum displacement capacity
 - Crashing into the moat wall

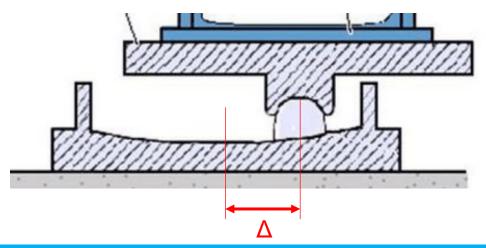

Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

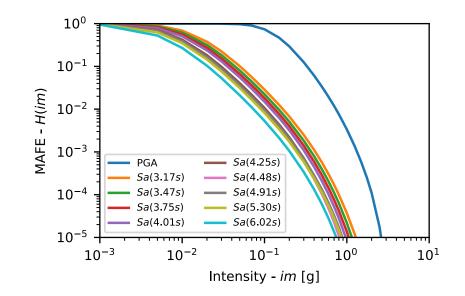
FPB isolator properties

 One of the biggest advantages of using FPB isolation systems is that the period of vibration is fixed for a given device

$$T_{iso} = 2\pi \sqrt{\frac{R}{g}}$$

- It is a function of the radius of curvature of the sliding surface
- It is independent of the superstructure's mass and dynamic properties
- The initial activation force is a function of the friction coefficient of the sliding surface



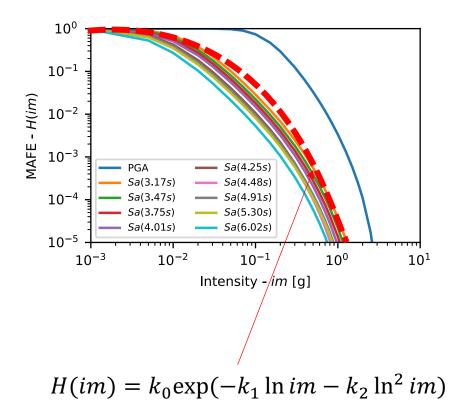


Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

Risk-based design procedure

- To overcome the limits of intensity-based design of isolators, a risk-based design procedure is proposed
- It capitalises on the mechanical properties of FPB isolators to give a closed-form solution
- The displacement-based risk metrics can be easily checked knowing just the bearing properties and the site hazard
- It utilises mean annual frequency of exceedance (MAFE) as its performance metric

$$\lambda_{\Delta} = \int_{0}^{+\infty} P[\Delta] > \Delta_{lim} IM = im] |dH(im)|$$

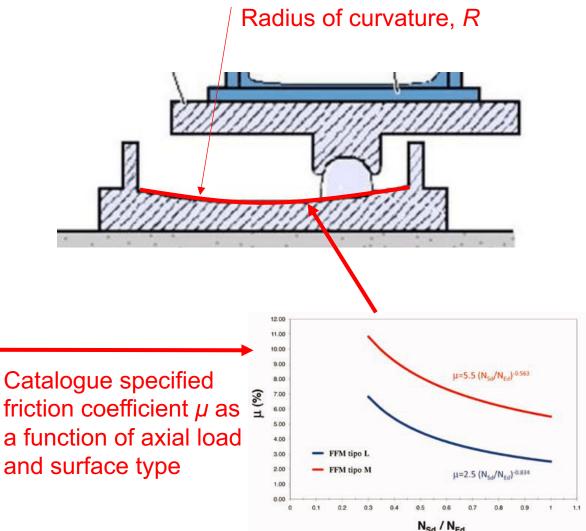

Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

Risk-based design procedure

• Using a simplified fit of the hazard curve, a closedform solution for MAFE can be obtained:

$$\lambda_{\Delta} = \sqrt{p}k_0^{1-p} [H(im)]^p \exp(0.5pk_1^2\beta_{\rho}^2)$$
$$p = \frac{1}{1+2k_2\beta_{\rho}^2}$$

- It essentially relies on the ability to predict the median intensity (and dispersion) associated with exceeding a given displacement demand, Δ
- This requires a <u>demand-intensity</u> model for the structural system



Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

Demand-intensity model for FPB systems

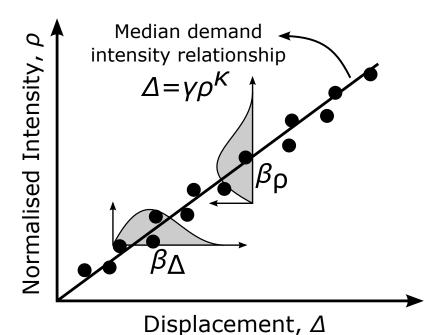
- Since base isolated systems with FPB isolators are governed by the behaviour of these bearings, the model can be simplified
- This can be written in terms of the bearing's geometric and friction surface properties
- These are properties that can be selected from a manufacturer's catalogue of available devices

Attrito minimo		Attrito medio		SPOSTAMENTO 1200 mm					
Sigla isolatore	N _{Ed}	Sigla isolatore	N Ed KN	T (TÖ	N mm	Z mm	H mm	1.0	W kg
FIP-D L 280/400 (3100)	1000			460	570	460	108	4	85
FIP-D L 370/400 (3100)	1500	FIP-D M 370/400 (3100)	270	490	600	490	114	4	110
FIP-D L 470/400 (3100)	2000	FIP-D M 470/400 (3100)	670	520	690	530	109	4	130
FIP-D L 550/400 (3100)	2500	FIP-D M 550/400 (3100)	980	540	710	540	106	4	140
FIP-D L 630/400 (3100)	3000	FIP-D M 630/400 (3100)	1340	560	730	560	125	4	170
FIP-D L 720/400 (3100)	3500	FIP-D M 720/400 (3100)	1730	580	750	580	121	4	180
FIP-D L 810/400 (3100)	4000	FIP-D M 810/400 (3100)	2150	600	770	600	128	4	210
FIP-D L 1000/400 (3100)	5000	FIP-D M 1000/400 (3100)	3100	640	890	690	152	4	290
FIP-D L 1150/400 (3100)	6000	FIP-D M 1150/400 (3100)	3950	670	920	710	146	4	310
FIP-D L 1350/400 (3100)	7000	FIP-D M 1350/400 (3100)	4850	700	950	730	150	4	360
FIP-D 1 1450/400 (3100)	8000	EIP-D M 1450/400 (3100)	5500	720	970	740	176	4	430

Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima

9

9-13 July 2023


Demand-intensity model for FPB systems

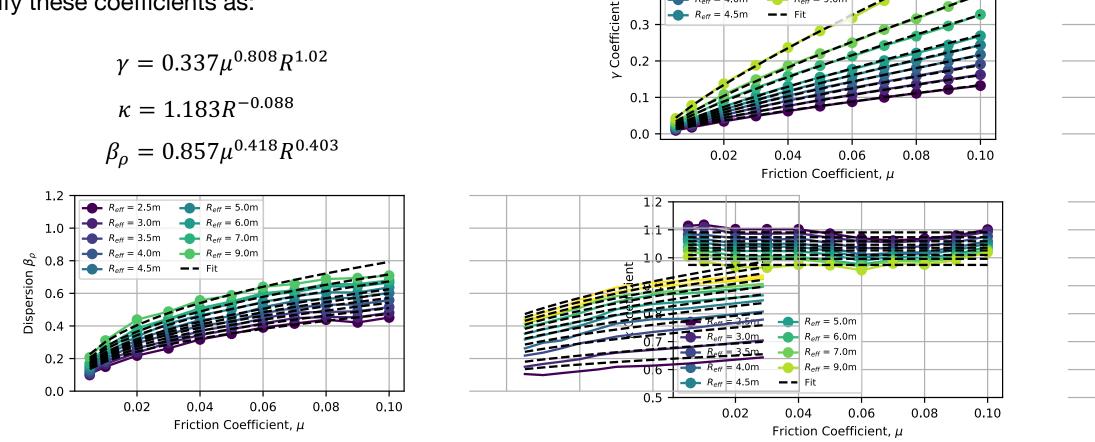
- The demand intensity model simply relates the seismic intensity required to exceed a given demand threshold
- The first step proposed by O'Reilly ey al. (2022) was to normalise the intensity by the friction coefficient

$$o = \frac{Sa(T_{iso})}{\mu}$$

• This is then plotted versus the FPB device displacement to give the demand-intensity model as:

$$p = \left(\frac{\Delta}{\gamma}\right)^{1/\kappa}$$

- where the coefficients γ and κ are assumed to be a function of the device properties
- The dispersion is denoted β


O'Reilly GJ, Yasumoto H, Suzuki Y, Calvi GM, Nakashima M. Risk-based seismic design of base-isolated structures with single surface friction sliders. Earthquake Engineering & Structural Dynamics 2022. DOI: 10.1002/eqe.3668.

Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

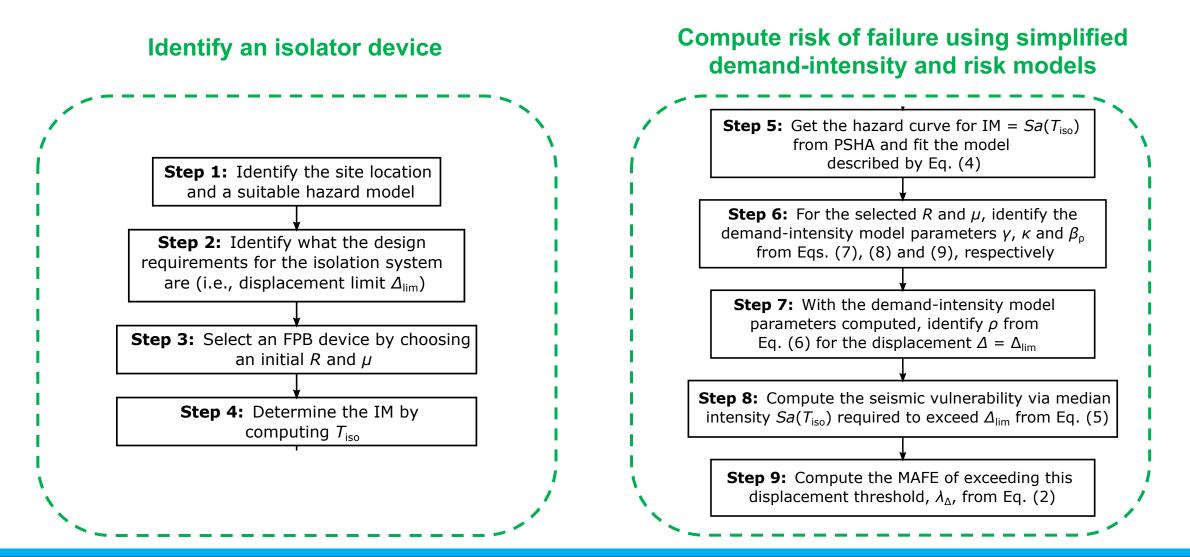
Demand-intensity model for FPB systems

• O'Reilly et al. (2022) conducted a parametric study to quantify these coefficients as:

 $0.5 \cdot$

0.4

 $R_{eff} = 5.0 \text{m}$ $R_{eff} = 6.0 \text{m}$

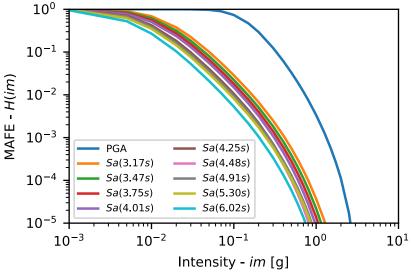

 $R_{off} = 7.0 \text{m}$

O'Reilly GJ, Yasumoto H, Suzuki Y, Calvi GM, Nakashima M. Risk-based seismic design of base-isolated structures with single surface friction sliders. Earthquake Engineering & Structural Dynamics 2022. DOI: 10.1002/eqe.3668.

Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

Procedure

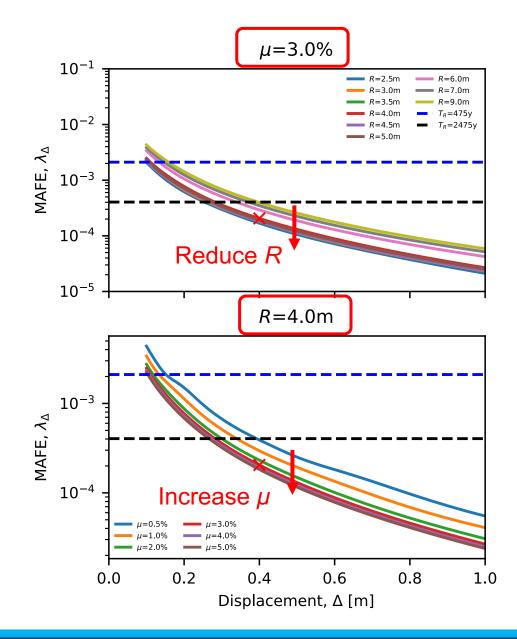
Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023


Case study example

- The proposed method can be used quickly in design situations to test whether a particular isolation system is suitable before a more thorough analysis
- Let us try:
 - Building located in L'Aquila, Italy
 - Displacement threshold of $\Delta_{\text{lim}} = 0.4 \text{m}$
 - FPB isolators $\mu = 3\%$ and R = 4m
- Since the isolator bearings are *R* = 4m, the period of vibration is:

$$T_{iso} = 2\pi \sqrt{\frac{R}{g}} = 2\pi \sqrt{\frac{4}{9.81}} = 4.01s$$

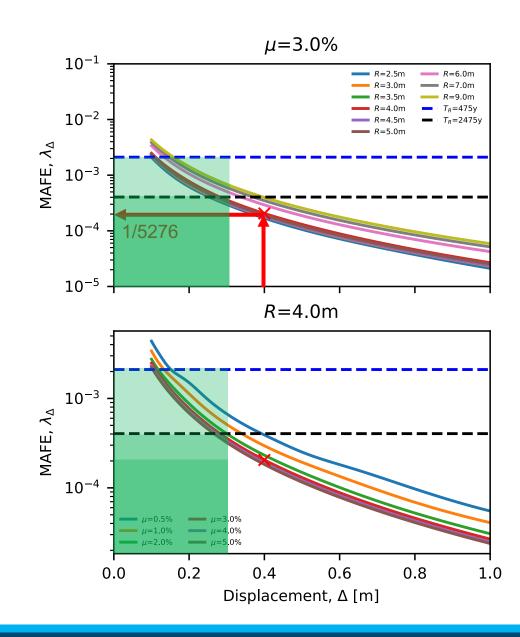
 Seismic hazard curve identified using the SHARE hazard model



Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

Case study example

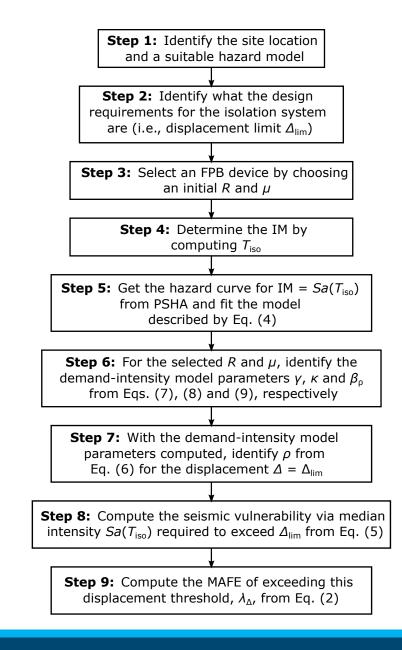
- Using the site hazard and candidate FPB isolator properties, the approach described previously was implemented to estimate the MAFE of the target displacement threshold of $\Delta_{\rm lim} = 0.4$ m
- This MAFE is shown via the red crosses
- This is the failure rate that can be checked against prescribed thresholds
- Repeating the same exercise for different FPB isolator and displacement combinations, the demand-hazard curves can be generated
- It can be observed that:
 - For a given µ, the MAFE can be lowered by reducing R
 - For a given R, the MAFE can be lowered by increasing μ



Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

Case study example

- Examining the risk for the chosen FPB isolation system, the MAFE is 1.895x10⁻⁴ which corresponds to a return period of 5276 years
- If a designer wants a displacement threshold of 0.3m and MAFE of 2475 years, only FPB isolators with R < 6m and $\mu > 3\%$ would be suitable
- For a less stringent MAFE of 1/475 years, all isolation systems would meet the objectives for a 0.3m displacement threshold
- For an MAFE of 1/5000 years and a 0.3m displacement threshold, none of the FPB isolators would work



Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima 9-13 July 2023

Conclusions

- The proposed procedure presented offers an effective and simple way to select FPB bearings for a risk-targeted seismic design of structures with isolators
- It is simpler than current design methods used in building codes, which often involve trial and error processes after numerical verification analyses
- It is risk-targeted, which current methods are not •
- Knowing the FPB isolation system and the displacement threshold, • the risk of device failure in existing buildings in a given region can be quickly estimated, allowing us to identify the isolated structures at an unacceptably high level of risk

Risk-targeted seismic design of base-isolated structures ICASP14, Dublin, Ireland G. J. O'Reilly, S. Sakurai, Y. Suzuki, G. M. Calvi, M. Nakashima

16

9-13 July 2023