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Background & Motivation
• Major steps made in the assessment of buildings over the past years.
• The advent of the PEER PBEE methodology has moved discourse from defining 

performance in terms of base shear, drift to that of economic impact and 
downtime, for example. 

• Current “state-of-practice” in the implementation of loss estimation studies 
contain a number of assumptions. 
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• The advent of the PEER PBEE methodology has moved discourse from defining 

performance in terms of base shear, drift to that of economic impact and 
downtime, for example. 

• Current “state-of-practice” in the implementation of loss estimation studies 
contain a number of assumptions. 
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PLAN VIEW

Application of the PBEE methodology 
(e.g. FEMA p58) typically linked to 
regular, symmetric case study structures

But what about irregular structures, with 
uneven bay lengths, non symmetry and 
torsionally dominated?
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Overview
• This presentation will expand on 3 main points related to this:

1. Examining the impact of structure torsionality on the estimation of 
RC frame damage.

2. The potential impact on the loss estimation.
3. Other aspects to consider in RC frame assessment.
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Case Study Buildings

• Frames designed using displacement based design (DDBD) to meet the 
requirements of Eurocode 8 with a PGA=0.4g.

• Frame B is the same as Frame A but with an addition set of RC walls to induce a 
torsional response of the frames. 

• The effects of this torsional response will be investigated later with respect to the 
symmetric response.
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Numerical Modelling

• RC member hysteresis implemented with a 
lumped plasticity approach using the Ibarra-
Medina-Krawinkler hysteretic model available 
in OpenSees.

• Hysteretic parameters computed from 
Haselton et al. [2008] for ductile RC members.
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Incremental Dynamic Analysis

• Incremental dynamic analysis (IDA) was performed using the FEMA P695 record 
set to characterise the behaviour of the frames with respect to IM.

• The IM used in this case was Sa(T*).
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Incremental Dynamic Analysis

• Incremental dynamic analysis (IDA) was performed using the FEMA P695 record 
set to characterise the behaviour of the frames with respect to IM.

• The IM used in this case was Sa(T*).
• The symmetric response of Frame A noted, whereas the increased response of the 

west end of Frame B in the Y direction is noted.
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Damage Assessment
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Damage Assessment

• For both frames, A and B, the damage to 
the frames on the west and east ends in the 
Y direction of response is assessed.

• Damage assessed using the fragility 
function set available in PACT.
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Damage Assessment

• For both frames, A and B, the damage to 
the frames on the west and east ends in the 
Y direction of response is assessed.
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Damage Assessment

• For both frames, A and B, the damage to 
the frames on the west and east ends in the 
Y direction of response is assessed.
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Damage Assessment
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Damage Assessment

• Comparing the results of the damage assessment shows some disparity between 
the two approaches.

• The heavy damage on the west side of Frame B shows how using the demands at 
the COM can be unconservative.

• Highlights the need for care when assessing more irregular structures.
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Damage Assessment

• Comparing the results of the damage assessment shows some disparity between 
the two approaches.

• The heavy damage on the west side of Frame B shows how using the demands at 
the COM can be unconservative.

• Highlights the need for care when assessing more irregular structures.
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Loss Estimation

• If we assume a damageable inventory for the RC frame only, we can examine the 
impact on the expected losses.

• Using Method 1 (i.e. using COM demands) result in up to a 30% underestimation 
of the expected loss.

• This disparity is especially prevalent in the lower intensities, which when 
integrated with the hazard curve can have major implications on quantities such as 
expected annual loss (EAL).
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Other Aspects and Future Directions
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• Fragility functions for ductile RC beam-column joints typically derived from sub-
assemblies like the one shown.

• These inherently assume mid-height contraflexure points and equal bay lengths.
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Other Aspects and Future Directions

• Fragility functions for ductile RC beam-column joints typically derived from sub-
assemblies like the one shown.

• These inherently assume mid-height contraflexure points and equal bay lengths.
• If we consider that the interstorey drift is a more indirect measure of damage and 

that beam hinge curvature demands to be more refined, what impact does this 
have?

• In cases of unequal bay lengths the damage to shorter bay lengths can be 
underestimated.
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Other Aspects and Future Directions

• Drift is often used as a demand parameter in assessment, but what does this 
mean?

• Interstorey drift and storey drift not necessarily the same thing.
• Interstorey drift is a good demand parameter for beam column joints, whereas 

storey drift is more suitable for non-structural elements such as partitions.
• Which ones are being used? Do they make sense and above all, are they consistent 

with the fragility function’s definition?
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storey drift is more suitable for non-structural elements such as partitions.
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with the fragility function’s definition?

13/01/2017 Santiago, Chile 26



Concluding Remarks
• This paper has highlighted some of the implications of some more refined 

considerations when assessing existing buildings.
• A case study building modelled both with and without torsionality was used to 

illustrate the potential impacts of simplifying assumptions.
• This impact of irregularity was extrapolated to loss estimations where differences 

of up to 30% were observed. 
• Overall, this paper highlights the need for care when assessing existing structures 

with various degrees of irregularity. 
• Finally, other aspects such as the derivation of fragility functions and definition of 

drift demand were highlighted.
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Thank you for your attention


