On the Efficient Risk Assessment of Bridge Structures

Gerard J. O'Reilly

IUSS Pavia & EUCENTRE Foundation

Ricardo Monteiro

IUSS Pavia & EUCENTRE Foundation

Intensity measures – what do we mean?

 An intensity measure (IM) is the interface variable that connects seismological and engineering aspects of seismic assessment

- Seismologists use ground motion prediction equations (GMPEs) and probabilistic seismic hazard analysis (PSHA) to evaluate the rate of exceedance of an IM at a specific site
- Engineers, on the other hand, use the IM to examine the subsequent response of structures and to evaluate their performance

Intensity measures – buildings

• The most classic example of an IM for buildings is the spectral acceleration at the first mode period $Sa(T_1)$

- The assessment of buildings is relatively straightforward:
 - Carried out on individual buildings (usually!)
 - Buildings tend to be first-mode dominated
 - Periods can be estimated reasonably well empirically

Intensity measures – bridges

 When switching the conversation to bridges, most of these "conveniences" no longer hold

- The assessment of bridges in a similar fashion is not so straightforward:
 - Most bridges have multi-modal response
 - Usually interested in entire bridge networks
 - Periods not so easy to estimate (some expressions do exist)

How are things currently done for bridges?

- In the past, peak ground acceleration (PGA) has been used.
 - Easy to define
 - Independent of bridge modal properties
 - Most hazard models will map PGA making it convenient for regional assessment
- So what? What is so bad about PGA?
 - It is poor predictor of building response
 - For bridges, it is not bad and comparable to others (see Monteiro *et al.* (2017))

Nielson & DesRoches (2007)

Average spectral acceleration – a better solution?

- PGA is not ideal, so can we do better?
 - Average spectral acceleration (AvgSa) has been developed recently for the assessment of buildings, showing many added benefits
- Benefits:
 - Simple in its definition
 - Relatively independent of modal properties (!)
 - Lower GMPE dispersion by definition
- Shown not to be the best predictor for any one EDP but the best "overall" predictor that suits different needs (i.e. EDPs, limit states etc.)

Case study bridges

- A number of case study bridge structures previously examined by Pinho *et al.* [14] were utilised
- Bridge structures of two lengths, with viaducts consisting of either four or eight 50m spans
- The label numbers 1, 2, and 3 denote pier heights of 7m, 14m, and 21m, respectively

Numerical modelling and limit states

- A numerical model of each bridge was built using OpenSees
- Pier elements were modelled using lumped plasticity elements, whose parameters were established from moment-curvature analysis
- To simulate the bar rupture, a MinMax criterion was used to simulate loss of strength beyond a certain strain threshold
- Rupture strain was estimated as 0.10 based on Priestley *et al.* [17] for reinforcement steel used in bridges in Europe.

Modal properties

- Unlike building structures, the first mode of response is not always the most dominant in the response
- Modal mass participation tends to be spread across a number of modes
- For some, 3 modes suffice and for others, more are required

	Periods			Modal Masses			
Bridge	T ₁ [s]	T ₂ [s]	T ₃ [s]	$\%M_1$	%M ₂	$%M_3$	Sum %M
1	0.56	0.45	0.28	28	9	12	48
2	0.56	0.47	0.25	27	17	1	45
3	0.48	0.48	0.22	31	0	57	88
4	0.51	0.48	0.31	19	0	76	95
5	0.48	0.48	0.23	16	0	74	89
6	0.49	0.47	0.36	4	9	29	42
7	0.56	0.44	0.39	11	7	29	47

Incremental dynamic analysis

- To characterise the bridge response, IDA was used:
 - Analyses were conducted in the transverse direction
 - 2% tangent stiffness-proportional Rayleigh damping model was adopted
- To quantify structural demand, an EDP was needed:
 - In buildings, maximum drift along the height or roof drift is a typical EDP
 - In the case of bridges, the damage is typically localised to the pier elements
 - Track the section curvatures in the pier element plastic hinge zones for each ground motion
 - Maximum for all piers chosen as the EDP

Intensity measures examined

- The IMs considered as part of this study were:
 - 1. PGA
 - **2.** $Sa(T_1)$ for each bridge
 - Sa(T_{med}) at median period of the first three modes for all bridges
 - 4. PGV (peak ground velocity)
 - 5. AvgSa for ten equally space periods spanning the range of T_{lower} and T_{upper}

```
T_{lower} = 0.5T_{3,16\%} = 0.11s
T_{upper} = 1.5T_{1,84\%} = 0.83s
```


Bridge	T ₁ [s]	T ₂ [s]	T ₃ [S]
1	0.56	0.45	0.28
2	0.56	0.47	0.25
3	0.48	0.48	0.22
4	0.51	0.48	0.31
5	0.48	0.48	0.23
6	0.49	0.47	0.36
7	0.56	0.44	0.39

Incremental dynamic analysis - IMs

- To use the same set of IDA results for each IM considered, a simple reprocessing for a different definition of ground motion intensity
- This simplified method is not perfect, but for the relative comparison we are looking to make here it is good enough
- Two limit states were examined based on the pier damage:
 - Pier yielding
 - Pier peak strength

Incremental dynamic analysis - Results

• Considering the intersection of these vertical lines, the dispersion due to record-to-record variability, β_{RTR} , of each IM could examined

Limit state dispersion

- Tentatively operating on the premise that lower dispersion implies a more accurate response quantification and, in turn, risk, some initial observations can be made
- Let's look at the mean values for both limit states for a better overall idea

So which one is best?

- PGA, $Sa(T_1)$ and $Sa(T_{med})$ are fair predictors at both limit states
 - Similar at yielding but PGA slightly better at peak strength
- $Sa(T_1)$ and $Sa(T_{med})$ are poor for regular bridges
 - Modal masses indicate that the 3rd mode is the dominant mode need to be careful
- *PGV* and *AvgSa* were the best ones overall
 - PGV sligthly better than AvgSa at peak strength but very inefficient at yielding

Conclusions

- We need to use an IM when performing risk assessment
- Typical IMs for building relate to the modal properties
- In bridges, this is not so straightforward
 - Multi-modal response
 - First mode of response is not always dominant
 - Typically need to look at a group of bridges
- Has led to the use of PGA and PGV for regional assessment
- AvgSa has proven to be an improved IM for buildings
- The work here shows that it is one of the better performers overall for bridge structures (both regular and irregular) compared to all other IMs examined

- This work was carried within the project INFRA-NAT, which looks to provide accessible tools to stakeholders for the assessment of bridge networks in Italy, North Macedonia and Israel
- Visit the project website:

www.infra-nat.eu

Thanks for your attention