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Background & Motivation
• Past earthquakes in have illustrated the vulnerability of existing RC frames structures
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Background & Motivation
• Damage surveys following the L’Aquila event of 2009 have shown the vulnerability of RC frames 

constructed prior to the 1970s, when seismic design provisions were introduced
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Numerical Modelling in OpenSees
• Efficient numerical modelling 

approaches that capture the behaviour 
of the components vulnerable to 
damage are required

• Experimental testing and past damage 
observed following earthquakes have 
highlighted the vulnerability of various 
elements:

• Non-ductile columns with 
modified behaviour due to smooth 
bars

• Weak beam-column joints (no 
transverse shear reinforcement)

• Shear failure of columns due to 
poor shear reinforcement and 
interaction with masonry infill
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Beam-Column Element
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Masonry Infill
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• Equivalent strut force deformation rule adopted from model 
proposed by Bertoldi et al. [1993] with more modifications by 
Sassun et al. [2015]

• Both single and double equivalent infill strut layouts outlined 
in Crisafulli et al. [2000] adopted here to represent the shear 
forces induced on the columns
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Beam-Column Joints
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• Scissors Model with rigid offsets in the joint centre are 
adopted to represent the vulnerable behaviour of the 
beam-column joints

• Calibrated to experimental data to capture joint strength 
and potential degradation
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Model validation - Three-storey frame
• Three storey test frame designed to be representative of Italian RC frames constructed prior to 1970s 

and tested by Calvi et al. [2002] at the University of Pavia
• Damage to the columns and exterior joints led to the formation of a non-ductile mechanism
• The shear deformation of the joints led to a spread in drift over the two adjacent floors rather than a 

concentration in a single storey
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Model validation - Three-storey frame
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• The proposed modelling captures the overall strength, stiffness and cycle transitions well
• The displaced shape with each cycle peak is matched well here, the joint failure on the ground floor, along 

with the column damage on the first floor, both captured
• This highlights the model’s ability to adequately capture the different behavioural aspects particular to GLD 

RC frames in Italy
Ba

se
 S

he
ar

 [k
N

]

Displacement [mm] Displacement [mm]



The Built Environment Data Framework for Simulated Design 

Gerard J. O’Reilly
Lausanne, Switzerland

6th March 2025

Model validation - Three-storey frame
• Alternatively, lumped plasticity model developed by Haselton et al. [2008] for ductile structures and 

no explicitly joint modelling is investigated
• The response of the structure is not well represented with the hysteretic loops much fatter than those 

of the test specimen and the overall displaced shape and governing is not well represented
• Highlights the need to properly consider the various aspects of GLD RC frames
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Model validation – SPEAR test frame
• Designed to the Greek design code in place between 1954 

and 1995
• Similar to the construction practice across much of southern 

Europe
• Designed to resist vertical gravity loading only
• Poor structural configuration considerations 
• Lack of capacity design used in modern design codes

• Structure was doubly asymmetric meaning that torsional 
response was expected to be significant

• It was pseudo-static dynamic test via actuators
• The ground motion record used was from the 1979 

Montenegro event and was spectrally adjusted to be 
compatible with the Eurocode 8 soil type C design spectrum
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Model validation – SPEAR test frame
• Throughout the testing, the dynamic properties were continuously 

monitored
• At the beginning of the test, the cracked section stiffness model 

tended to underestimate
• As the test progressed and the sections began to crack, the modal 

properties gradually moved toward the cracked model’s frequency 
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Model validation – SPEAR test frame
• The response was compared with those 

predicted using some of the numerical 
modelling strategies previously outlined

• The maximum displacements in the X direction 
are matched excellently, whereas the 
displacements in the Y direction and the 
torsional response are slightly underestimated, 
but still reasonably representative

• Comparing test observations with the damage 
observed in the numerical prediction showed a 
similar damage pattern with light damage to 
the column ends, no damage recorded in the 
beam-column joints and some light damage to 
beams in the vicinity of column C6
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Model validation (ISAAC Blind Prediction Contest)
• Three-storey infilled RC building
• B450C rebars (Fy=420 MPa, Fu = 450 MPa)
• C30/37 concrete (f’c = 30 MPa)
• Malta M5 infill panels (25x25x8 cm)
• Beams: 54x25cm, 40x25cm
• Columns: 20x20cm
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Model validation (ISAAC Blind Prediction Contest)
• Three-dimensional lumped plasticity 

OpenSees model 
• Non-ductile RC beam-column elements
• Non-ductile exterior beam-column joints
• Single-strut infill panels
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Built Environment Data
• The collection and archiving of data is key in this context
• At the Eucentre Foundation, we are leading an initiative termed 

Built Environment Data (BED)
• It aims to provide access to data and services related to the built 

environment
• A memorandum of understanding (MoU) exists with the European 

Plate Observing System (EPOS) to integrate BED as a Thematic 
Core Service (TCS)

www.builtenvdata.eu
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Built Environment Data
• BED hosts both data and services 

needed to enhance risk assessment and 
ensure the safety and resilience of the 
built environment

• Currently, there are four services within 
BED led by different institutions around 
Europe:

• Experiments (EUCENTRE)
• RESSLab-Hub (EPFL)
• Simulated Design (UPORTO)
• Embodied Carbon (GEM)
• URM Data (EPFL)
• Stone Masonry Data (EPFL)

• The scope is to extend and grow these 
services in the context of risk 
assessment of the built environment

Experiments

www.builtenvdata.eu
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BED: Experiments
• One service that is growing quickly relates to 

experimental test data 
• While not directly related to vulnerability modelling, 

it is fundamental to understand structural behaviour 
and calibrate numerical models

• Currently contributions from laboratories across 
Europe and around the world, with more tests 
added each week

Query the 
datasets

Documentation of web services available at 
https://experiments.builtenvdata.eu/web-services

Experiments
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BED: Simulated Design
• BED: Simulated Design is an initiative aimed at automating 

the creation of numerical models
• They are regionally specific and capture the temporal 

evolution of construction practices across Europe
• The typical choices of engineers at various points in time 

have been collected and documented
• This allows building designs to be simulated and be 

representative of what was done at different locations and 
at different times in the past

• The principal outputs are designs and numerical models 
for feasible designs

SimDesignSimple 
inputs
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SimDesign Package
• This SimDesign framework is available on GitHub
• Available at: 

https://github.com/builtenvdata/simulated-design
• This lets you download and use it as part of your 

Python workflow

https://github.com/builtenvdata/simulated-design
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Workflow

User Inputs
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Workflow
RC-MRF RC-Wall Steel-MRFTypology

User Inputs
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Taxonomy
# Storeys
β Coefficient

Year
Region

SimDesign 
Engine



The Built Environment Data Framework for Simulated Design 

Gerard J. O’Reilly
Lausanne, Switzerland

6th March 2025

Workflow
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Workflow
RC-MRF RC-Wall Steel-MRFTypology

EU ITTRRegion

CDH CDNCDLCDMYear

These refer to the 
temporal evolution of 
design codes from low to 
medium and high code
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Workflow
RC-MRF RC-Wall Steel-MRFTypology
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Year CDH CDNCDLCDM

BDIM
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Workflow
RC-MRF RC-Wall Steel-MRFTypology

EU ITTRRegion

Year

BDIM

Layouts

# Storeys

β Capacity

BED Design 
Outputs

CDH CDNCDLCDM

User Inputs

Typology
Taxonomy
# Storeys
β Coefficient

Year
Region

SimDesign
Engine



The Built Environment Data Framework for Simulated Design 

Gerard J. O’Reilly
Lausanne, Switzerland

6th March 2025

Workflow
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User Input
• The scope of the Simulated Design framework is to allow risk analysts to 

generate representative building models for large-scale analysis
• Detailed inputs are difficult to obtain systematically 
• Hence, the user needs to provide some general parameters and the 

framework takes care of the rest:
• typology
• design_class (region/year)
• num_storeys
• beta coefficient
• layout
• sample_size

• These are provided in simple JSON file format 

User Inputs

Typology
Taxonomy
# Storeys
β Coefficient

Year
Region
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Building Class Information Model (BCIM)
RC-MRF RC-Wall Steel-MRF

BCIM
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Building Class Information Model (BCIM)
• The building class information model (BCIM) contains statistical 

information about a country’s construction and evolution over time
• It answers the question:

“What kind of buildings were constructed in this region?”
• It is obtained from case studies, census data, practitioner interviews, 

etc.
• It is stored in JSON file format also and is developed in specific 

studies:
• typical_storey_height
• staircase_bay_width
• standard_bay_width
• steel
• concrete
• ground_storey_height
• construction_quality
• slab_properties
• square_column_ratio
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Building Design Information Model (BDIM)
RC-MRF RC-Wall Steel-MRF
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Building Design Information Model (BDIM)
• This building design information model (BDIM) defines the way 

in which engineers designed these buildings
• It answers the question:

“For these kinds of buildings that were constructed in 
this region, how did the engineers typically design 
them during that period?”

• It is obtained from past design manuals, reference textbooks, 
case studies, practitioner interviews, etc.

• It is implemented as several classes and methods in what is 
termed the base library

• The BDIM for specific regions, periods and typologies can be 
modified and extended
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Example 1: Building-to-Building Variability
• Case-study portfolio generation (RC-MRF buildings)

• Design class: CDL
• Design lateral load coefficient, β: 0.1
• Number of storeys: 4
• Sample size: 30

Expected 
Ductility
Level

Seismic Design Practice
Seismic Hazard Level

𝜷 = 𝑲𝒔 $ 𝑲𝒐 $ 𝑲𝒅 $ 𝑲𝒑

Ks: coefficient based on seismic intensity (e.g., PGA475 in g)
Ko: coefficient based on the type/importance of the building
Kd: coefficient that accounts for dynamic response (e.g., 
lambda factor of EC8-1 section 4.3.3.2.2)
Kp: coefficient that accounts for ductility and energy dissipation
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Example 1: Building-to-Building Variability
Sampled 
secondary 
attributes

Sampled 
geometry 
variables

Resulting 
geometrical 
properties
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Example 1: Building-to-Building Variability
• Nonlinear static pushover analyses results
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Example 2: Simulated Design Capabilities
● The same BCIM data for two different design classes, CDL and CDH, across varying seismic hazard 

levels (β values).

● CDL: Designed for lateral resistance using first generation of seismic codes

● Based on Portuguese specifications (common in Europe, 1960s–1970s)

● Uses allowable stress design 

● Seismic action is represented by equivalent lateral forces computed only from floor weights

● CDH: Designed for lateral resistance using Eurocodes

● Uses limit state design coupled with ductility requirements (e.g., capacity design)
● For seismic design, DCM requirements in Eurocode 8 are followed, as more commonly adopted 

in Europe

● Seismic forces computed based on both floor weights and storey heights
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Example 2: Simulated Design Capabilities
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Summary and future possibilities
• A powerful tool BED: Simulated Design was presented help recreate 

designs for risk analysis
• The output is a numerical model of existing structures in OpenSees 

(both Py and Tcl)
• It has several functions but possible modifications:

• Adding different national contexts (i.e., BCIM)
• Adding different structural typologies 
• Adding different modelling approaches 

• With modest modifications, this can be extended to other contexts: 
tsunami, wind, etc.

• Overall aim is to make these tools available and integrate them on the 
broader sphere of EPOS
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