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ABSTRACT: An improved method of fitting second-order analytical functional forms of seismic hazard 

compatible with SAC/FEMA-style analysis is presented for use in performance-based earthquake 

engineering. A novel set of expressions based on fitting at three distinct return periods is proposed and a 

series of computational tools to automate this are provided. Analysts can simply provide the empirical 

output of seismic hazard analysis to obtain the best analytical fit. The method is based on a selection of 

three return periods that can be adjusted depending on the needs with the purpose of error reduction. The 

proposed model is compared to available fitting functions, such as the least-squares method or based on 

two return periods that have be typically used to date. Comparative analyses in terms of hazard fit and 

also the implications on risk estimates indicate error reductions across the entire hazard despite using 

three return periods for fitting the functional form. The proposed fitting method is envisaged to be used 

in line with closed-form expressions of SAC/FEMA methodology for a more practice-oriented 

implementation of seismic risk analysis in design and assessment. 

1. INTRODUCTION 

One of the cornerstones of earthquake 

engineering is the accurate quantification of 

seismic hazard. Seismic hazard describes the 

exceedance of a given ground motion intensity 

measure (IM) over a specified period of time; in 

other words, the relationship between IM level 

and its annual rate of exceedance, and this is 

typically obtained by performing probabilistic 

seismic hazard analysis (PSHA) (Esteva 1967). 

To simply represent the outputs of PSHA for use 

in practical settings, Sewell et al. (1996) proposed 

a power law expression for the relationship: 

( ) k

oH s k s−=  (1) 

where H is the annual rate of exceedance of a 

ground motion intensity, s; k0 and k are the 

constants with the former being the annual rate of 

exceedance of s = 1g, and the latter being the slope 

of the hazard function in the log-log domain.  

A probabilistic framework has been 

developed, termed performance-based earthquake 

engineering (PBEE), at the Pacific Earthquake 

Engineering Research (PEER) center to capture 

the performance of structures from elastic 

response right up to global instability, under 

ground motion excitations (Cornell and 

Krawinkler 2000). Several methodologies have 

been developed over the years, one of which was 

the SAC project by the Federal Emergency 

Management Agency (FEMA) with the concept 

of seismic performance evaluation of structures in 

a probabilistic manner (Cornell et al. 2002). A 

closed-form solution to estimate the mean annual 

frequency (MAF) of limit-state exceedance was 

devised, convolving seismic hazard with 

structural response fragility and capitalized on the 

power law representation of seismic hazard in Eq 

(1) and the assumption of a lognormally-

distributed limit state fragility function. Through 

this, the aleatory variability caused by natural 
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randomness is directly included, while epistemic 

uncertainty because of incomplete knowledge can 

be accounted for through a user-selected level of 

confidence. Due to its simplicity, it has become 

the core feature of PBEE in several different 

contexts and applications, from risk and loss 

assessment of existing buildings (O’Reilly et al. 

2020; Pinto and Franchin 2014), to the risk-

targeted design of new structures (Shahnazaryan 

et al. 2022; Shahnazaryan and O’Reilly 2021; 

Vamvatsikos et al. 2016).  

While this SAC/FEMA developed by Cornell 

et al. (2002) is simple in its nature, several issues 

have been outlined, primarily by Aslani and 

Miranda (2005) and Bradley and Dhakal (2008). 

The main criticism relates to the adequacy of the 

power law representation of the hazard curve, as 

due to the hyperbolic shape of actual hazard 

analysis outputs, large errors may be introduced 

through the use of Eq. (1). Bradley et al. (2007)  

proposed an alternative functions that recognized 

the asymptotical nature of hazard analysis data in 

terms of exceedance rates at very low intensities, 

in addition to the maximum intensity at very long 

return periods. In addition, Vamvatsikos (2013) 

revised Eq. (1) to incorporate the curvature of 

hazard data to give a second-order power law: 

( ) ( )2

2 1exp ln lnoH s k k s k s= − −  (2) 

where k1, k2>0 and k2≥0 are the constants, with the 

latter characterizing the (local) hazard curvature. 

This closed-form solution provides an improved 

estimate of demand hazard within the range of 

exceedance rate where the constant of the 

equations is fitted.  

While Eq. (1) and (2) offer closed-form 

analytical functions to quantify seismic hazard, 

and subsequent tools to simply estimate risk, 

analysts still need some robust and objective way 

to quantify the coefficients. There are several 

methods of fitting these coefficients and the 

accuracy of those methods varies depending on 

whether a linear or second-order power law is 

selected, in addition to which fitting method is 

employed. Additionally, analytical functions exist 

that capture the seismic hazard adequately but do 

not maintain the SAC/FEMA compatibility to 

further their integration into simplified seismic 

design and assessment. This paper provides a new 

objective and robust fitting  solution to represent 

the seismic hazard with minimal error, while also 

maintaining practical implementation for risk 

analysis.  

2. HAZARD FITTING METHODS 

2.1. Existing methods 

There are several approaches to computing the 

fitting parameters of Eq. (1) and (2). Jalayer 

(2003) proposed fitting Eq. (1) by constraining the 

function at two IM levels: design basis earthquake 

(DBE) and maximum considered earthquake 

(MCE) at 10 and 2% probabilities of exceedance 

in 50 years, respectively.  By doing so, the 

parameters could be computed as follows: 

( )

( )

ln

ln

DBE MCE

MCE DBE

H H
k

s s
=  

(3) 

( )0

k

DBE DBEk H s=  (4) 

where sDBE, sMCE are the ground motion 

intensities, and HDBE and HMCE are the annual 

rates of exceedance at the DBE and MCE hazard 

levels. Essentially, the accuracy of the model is 

only achieved within the constrained IM range 

(Figure 1), and large overestimations of hazard 

may result at lower and more frequent intensities 

if another local fit of Eq. (1) is not conducted. 

 
Figure 1: Hazard data fitted through Eq. (1) by 

constraining at two IM levels.  
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Bradley et al. (2007) reviewed the use of a 

simple power law to represent the hazard curve 

and proposed fitting hazard data to an improved 

hyperbolic model using non-linear least-squares 

regression. The primary reason was due to 

inaccuracies of the power law in capturing the 

hazard data where large curvatures were present, 

which tended to introduce large errors in the fit. 

Given the shape of the hazard data, the curve was 

approximated through a hyperbola of form y=α/x 

with vertical and horizontal asymptotes (Figure 

2): 

( )

1

exp lnasy

asy

s
H s H

s


−   
 =         

 (5) 

where Hasy, sasy and α are determined through the 

fitting. This is done by minimizing the relative 

error between the logarithms of the hazard data 

and the fitted curve via: 

( ) ( )( )
2

1

 ln ln
n

i i

i

Minimize R H H s
=

 = −   (6) 

where Hi are the hazard data points, and H(si) are 

the values of H obtained from Eq. (5). Even 

though accurate results can be obtained following 

this approach, it does not lend itself towards 

simple estimates of seismic risk like the 

SAC/FEMA method described by Cornell et al. 

(2002), and therefore has not been widely utilized 

within the earthquake engineering community. 

 
Figure 2: Hazard data fitted following the Bradley et 

al. (2007) method.  

Similarly, Vamvatsikos (2013) aimed to 

rectify the issues of the power law by 

incorporating the effects of curvature in the 

formulation. A higher-fidelity second-order 

power-law hazard fit was used (Eq. (2)) and new 

analytical expressions were derived to offer better 

predictive ability regardless of the shape of the 

hazard function. The advantage of these new 

expressions is their SAC/FEMA compatibility as 

well as the improved accuracy over a simpler 

power law. However, where very large curvatures 

of seismic hazard are present, the approach might 

not perfectly fit the curve, especially at the highest 

and lowest MAFs. This is not a criticism of the 

model but rather the fitting approach generally 

utilized to obtain the coefficients, which is usually 

a non-linear least-squares regression model 

available in most analysis tools.  

2.2. Proposed method 

To remedy the drawbacks of the fitting methods 

currently available, novel closed-form 

expressions are proposed to optimize the fitting 

obtained, while retaining the second-order law 

formulation and the SAC/FEMA compatibility 

that offers such practical convenience. The key 

difference lies with the fitting approach, whereby 

instead of using optimization functions or 

regression on the seismic hazard data directly, 

several analytical expressions are used. Initially, 

three points are selected on the hazard curve (Eq. 

(7)), where the fitting function will be optimized 

(Eq. (2)). The definition of these points is a 

customizable user input, but default values are 

given in later sections. The actual hazard data 

points of IM are then used to construct a 3 by 3 

matrix in Eq. (8). Then the matrix product of the 

inverted matrix and the vector of logarithms of H 

is obtained via Eq. (9). Finally, the fitting 

coefficients are obtained via Eq. (10). 

1 2 3

1 2 3

[ , , ]

[ , , ]

s s s s

H H H H

=

=
 

(7) 
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1 1

2 2
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k r

k r

=

=

=

 

(10) 

The fitting coefficient may then be inserted into 

the functional form of Eq. (2). If the fitted data 

does not match well with the actual seismic 

hazard, or at certain points, desirable fitting is not 

achieved, the target points on the hazard curve in 

Eq. (7) could be updated.  

3. EVALUATION OF FITTING METHODS 

In order to carry out a comparative evaluation of 

these different functional forms and fitting 

approaches, example locations in three different 

regions were selected: Italy, New Zealand, USA. 

The goal is to understand how the fitting functions 

would perform with drastic variations in the 

curvature of the seismic hazard due to various 

tectonic regions.  

PSHA was performed for L’Aquila in Italy 

using OpenQuake (Pagani et al. 2014) with the 

SHARE hazard model (Woessner and Wiemer 

2005). The hazard curve of Wellington was 

obtained through the New Zealand seismic hazard 

model (Stirling et al. 2012). Finally, the hazard 

curve of a site located in California was obtained 

through the USGS hazard tool (2023).  

3.1. Hazard fitting 

Following PSHA, three hazard curves were 

selected for comparative purposes and were fitted 

following four different approaches: 

• Approach 1: Proposed fitting approach of 

Eq. (2) utilizing Eqs. (7) - (10) and no 

minimization function; 

• Approach 2a: Least-squares fitting 

approach of Eq. (2) and minimizing via 

Eq. (6); 

• Approach 2b: Least-squares fitting 

approach of Eq. (2) and minimizing via 

Eq. (11); 

• Approach 3: Log-linear fitting approach of 

Eq. (1) using Eqs. (3) and (4); 

• Approach 4: Least-squares fitting 

approach of Eq. (5) and minimizing via 

Eq. (6), as advocated by Bradley et al. 

(2007). 

For the site of L’Aquila, all approaches 

achieved very good fits (Figure 3a), except the 

log-linear approach due to the slight curvature in 

the hazard data, which is an expected result. The 

Wellington fits deviated slightly at low intensities, 

where a curvature changes significantly after 

0.01g (Figure 3b). In contrast, for the site in 

California, while the error between the observed 

and predicted hazard is small at high return 

periods, the error increases dramatically for all 

approaches, except for Bradley et al. (2007), at 

smaller return periods (Figure 3c).  

3.1.1. Impact of error minimization function 

Given the curvature of hazard curves of 

California, the least-squares method resulted in 

significant errors, hence instead of minimizing the 

logarithms of the error, the following error was 

minimized: 

( )
2

1

 
n

i i

i

Minimize R H H s
=

= −    (11) 

This was done as significant errors were 

observed when using the least squares approach 

with Eq. (6). This is predominantly due to the 

smaller penalization effect at high periods using 

the natural logarithm. Therefore, when using the 

least-squares approach, one must carefully select 

the minimization function, as shown in Figure 4. 

The significant variation of the predicted hazard 

curves demonstrates the vital importance of 

selecting a correct error function when employing 

the least-squares fitting method. The major 

advantage of the proposed approach eliminates 
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the need for a minimization function during 

fitting, providing a key benefit.  

 

 

 

 
Figure 3: Comparison of fitting functions for the site 

of (a) L’Aquila, Italy, (b) Wellington, New Zealand, 

and (c) California, USA, where the fits for PGA and 

Sa(2s) are shown via the dashed and solid lines, 

respectively 

 
Figure 4: Comparison of least-squares fitting 

functions for the site of California, USA using 

different error functions.  

3.1.2. Impact of targeted hazard curve range 

However, even with a proper selection of an error 

function, significant variations of observed versus 

predicted hazard curves are observed at high-

intensity levels. To counteract, the proposed 

approach may be utilized to target better fitting at 

higher intensity levels. Figure 5 demonstrates the 

flexibility of the proposed approach to improve 

the fitting quality at intensities of interest with 

user-defined target intensity levels as per Eq. (7).  

 
Figure 5: Comparison of the proposed fitting 

functions (Approach 1) for the site of California, USA 

using different target intensities: targeting high 

intensities (5, 20, 59000 years); targeting low 

intensities (5, 10, 1250 years).  

3.2. Implications on risk assessment 

Even though the errors in predicting the hazard 

model via various fitting approaches might 
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produce seemingly large errors as observed in 

Figure 3, to further gauge the quality of the fits, 

they are used to compute the MAF of exceedance, 

λ, at a given peak story drift (PSD), θ, in a 

building. For that purpose, an exemplary demand-

intensity model (O’Reilly and Calvi 2020) was 

assumed to characterize the performance of a 

ductile structure that is expected to be a first 

mode-based beam-sway mechanism. 

As previously mentioned, Cornell et al. 

(2002) devised a closed-form solution to estimate 

the MAF of limit-state exceedance that convolves 

the power-law fitting of seismic hazard (Eq. (1)) 

with the structural response as: 
1

2
2

2
exp

2

b
c

Tot

k
H

m b


 

 
   =       

 

 (12) 

where θC is the PSD where λ is being computed, 

m and b are the fitting parameters of the demand-

intensity model (taken here as m=0.5 and b=1.0), 

and βTot is the total uncertainty in the PSD (taken 

as βTot=0.4). Vamvatsikos (2013) expanded on 

this with a refined seismic hazard curve 

characterized through a second-order fitting of 

Eq. (2) and proposed:  
/

/

1
2 /

/ 1 21
0 2

exp
2

b
c

Tot

k
k H

m b



  
  −

 
   =       

 

 (13) 

where ϕ/ is given by: 

/

2 2

2

1

1 2 Totk b



=

+
 (14) 

The PSD exceedance rates were computed 

following each of the approaches for all the sites 

and compared to the direct integration method, 

where the seismic hazard output from PSHA was 

directly convolved with the assumed demand-

intensity model, giving a reference value with 

which to evaluate the different approaches. Since 

the functional form of Bradley et al. (2007) of Eq. 

(5) is not SAC/FEMA-compatible, the predicted 

model was convolved with the structural response 

through direct integration via the trapezoidal rule. 

Figure 6 shows the computed exceedance 

rates of PSD following the different approaches.  

 

 

 
Figure 6: PSD exceedance rates for the site of (a) 

L’Aquila, Italy, (b) Wellington, New Zealand, and (c) 

California, USA for PGA. 

It can be seen that the errors are not as 

significant in terms of the risk calculation, when 

compared to the hazard shown in Figure 3. 

However, discrepancies at high and low values of 

PSD are noted for Approaches 2 and 3. 
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Additionally, the errors begin to significantly 

increase for the site in California, especially for 

high PSD values that could characterize collapse. 

Therefore, to avoid potential issues the proposed 

approach might be tuned to target rare events, i.e., 

high IM values when performing collapse risk 

assessment.  

4. AVAILABLE TOOLS 

Given the robust and user-friendly nature of the 

proposed approach for fitting the seismic hazard, 

several tools are made available to the reader at  

https://github.com/davitshahnazaryan3/HAZAR

D/tree/master/fitting_tool. The user is required to 

input a seismic hazard data points obtained 

through PSHA. By default, the tool fits to data 

points at return periods of around 5, 20, and 650 

years, but these values are easily adjustable to 

meet the user’s specific needs and improve 

conformance of results.  

5. CONCLUSIONS 

Different approaches for fitting seismic hazard 

curves were discussed within this study in a 

comparative setting. New closed-form fitting 

solutions were devised to capture the seismic 

hazard with minimal error while maintaining 

SAC/FEMA compatibility. Three sites around the 

globe characterizing different tectonic regimes 

resulting in different seismic hazard curve shapes 

were utilized to gauge the accuracy of different 

hazard fitting methods. The sites included 

L’Aquila, Italy; Wellington, New Zealand; and 

California, USA. Several conclusions were 

derived from the study: 

1. The proposed formulation allows 

targeting three distinct points on the 

seismic hazard curve to prioritize fitting at 

different intensity levels. In contrast to the 

log-linear power law, the proposal 

approach bases itself upon three points to 

mimic a hyperbolic curve.  

2. The target intensity measure levels may be 

tuned to increase accuracy at different 

sections of seismic hazard. In contrast, the 

typical least-square fitting approach might 

result in high errors at collapsing 

intensities forcing a manual-based fitting 

approach and preventing automation.  

3. The least-squares fitting approach is very 

sensitive to the error function selection. 

For example, for the site in the USA, the 

error was minimized, while for the site in 

Italy, the logarithms of the error were 

minimized, whereas vice versa gave poor 

fits.  

4. Finally, the proposed method can be easily 

adapted through hand calculations rather 

than using a relatively complex nonlinear 

fitting approach such as a least-squares 

method.  
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