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Abstract: A recently proposed intensity measure (IM), namely filtered incremental velocity, FIV3, was shown 
to have strong potential in predicting the seismic collapse of structures. A ground motion model (GMM) was 
also developed recently to predict the probability distribution of this period-dependent IM, given a set of 
seismological and filtering parameters. Nonetheless, there is still a need for correlation models if one wants to 
perform seismic hazard analysis and ground motion selection using FIV3 via, say, the conditional spectrum 
method. Examining its correlation with other IMs, such as spectral acceleration, Sa, and significant duration, 
Ds595, will also enable a more generalised selection and scaling of ground motions via the generalised 
conditional intensity measure (GCIM) method. The motivation to use these IMs is the high predictive power 
they exhibit not only over the structural collapse limits, but also throughout the whole non-linear response of 
structures. A generalised ground motion model (GGMM) estimating all the aforementioned IMs, using 
machine-learning techniques, based on the NGA-West2 database was utilised to calculate the correlations 
between the residuals. Correlations were calculated for intra- and inter- event residuals, but only the ones for 
total residuals are presented here. To facilitate the usage of these correlation coefficients, predictive models 
of the empirical data were developed using again machine-learning-based techniques, namely artificial neural 
networks (ANNs). The period range of applicability of these correlation models spans from 0.01 s to 5 s, for 
Sa and from 0.1 s to 4 s for FIV3. It was found that FIV3 is strongly correlated with Sa(~1s) and itself across 
all periods, and has a weak negative correlation with duration at short periods and near-zero correlation for 
longer periods. 

1. Introduction 
The earthquake-induced ground motion severity can be quantified via a plethora of proxies describing the 
amplitude, frequency content and duration of ground shaking, termed as intensity measures (IMs). 
Traditionally, the ground motion amplitude and frequency content are explicitly considered through the 
examination of acceleration-based response spectrum quantities. However, other type of IMs, like duration or 
filtered incremental velocity, FIV3, have received less attention despite being efficient predictors of structural 
response (Bojórquez et al., 2012). These ‘secondary’ features of ground motion shaking (i.e., duration, energy 
content, velocity-based IMs etc.) are assumed to be implicitly accounted for by limiting the causal parameters 
(e.g., magnitude, source-to-site) of the selected ground motion record set (Bommer and Acevedo, 2004; 
ASCE, 2017; Spillatura et al., 2021). 

Regarding the importance of duration, Hancock and Bommer (2006) summarised how different conclusions 
have been drawn in the literature, depending on the structural demand parameters considered in each study. 
A few studies that considered only peak structural deformations (Sarieddine and Lin, 2013) found that duration 
has little effect. Meanwhile, most other studies (Iervolino et al., 2006; Oyarzo-Vera and Chouw, 2008; 
Raghunandan and Liel, 2013; Chandramohan et al., 2016; Gentile and Galasso, 2021) found that, while 
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duration does not influence the peak deformations, it does influence the cumulative engineering demand 
parameters, and therefore the damage due to cumulative effects. Nevertheless, it is always important to 
consider the correlation of duration with Sa when examining the effects of duration on structural response. 

Regarding the importance of FIV3, some recent studies highlighted the value of this IM in estimating seismic 
collapse in buildings and bridges (Dávalos and Miranda, 2019; Dávalos and Miranda, 2020; Aristeidou and 
O’Reilly, 2023). There is already one empirical ground motion model (GMM) for the estimation of this IM 
(Dávalos et al., 2020). It is envisaged that when used with Sa (or average spectral acceleration, Saavg) and 
even 5–95% significant duration, Ds595, in a generalised conditional intensity measure (GCIM) ground motion 
selection procedure (Bradley, 2010), one can enjoy high predictive power, not only in collapse estimates, but 
throughout the non-linear response of structures. Following this same line of thinking, there is an increased 
interest to select ground motion records based on multiple ground motion features for non-linear response 
history analysis (Katsanos et al., 2010). This reduces the record-to-record variability, increases the efficiency 
of the prediction, and better represents the seismic hazard conditions in the analysis as part of the overall 
performance-based earthquake engineering framework (Sousa et al., 2016).  

With more advanced record selection methods like the GCIM, it became possible to explicitly consider several 
IMs. To use this method, GMMs and correlation models are needed for each of the IMs utilised. The GMM 
provides the marginal, or unconditional, distribution of an IM given specific causal parameters (Baker et al., 
2021). To obtain conditional distributions of an IM with other relevant IMs, the correlation between them is 
needed. To date, there are no available correlation models of inter-spectral FIV3 values and FIV3 with other 
IMs. Therefore, in this paper the following correlation are proposed: FIV3-FIV3; FIV3-Sa; FIV3-Ds595; Sa-Sa; 
Sa-Ds595. Additionally, these correlations can find use in particular performance-based assessments, where it 
is often required to estimate the joint probability of occurrence of the IMs through a vector-PSHA (Bazzurro 
and Cornell, 2002). 

This paper explores the use of machine learning-based techniques, namely artificial neural network (ANN), for 
the predictive models of correlations among the IMs discussed above, instead of the traditional way of 
identifying functional forms, which in some cases might deviate from empirical values in their estimations. 
Firstly, the IMs are described in more detail, describing their computation, along with a brief description of the 
adopted GMM and strong motion database. Secondly, the methodology for computing the correlation 
coefficients is outlined and the architecture of ANN models is outlined. Finally, the quantified empirical 
correlations are appraised and the comparisons with the fitted ANN models and other existing models are 
discussed. 

2. Intensity measures 
The correlations between the following IMs were investigated in this study: 

• Sa(T): 5%-damped spectral acceleration at a vibration period, T. The RotD50 horizontal component 
definition (Boore, 2010) was adopted. 

• Ds595: 5-95% significant duration, defined as the time interval over which 5% to 95% of the integral 
∫ [𝑎(𝑡)]!𝑑𝑡"!"#
#  is accumulated (Trifunac and Brady, 1975), as per Eq. (1). 

• FIV3: filtered incremental velocity, defined by Dávalos and Miranda (2019) and summarised in Eq. (3) 

Even though there are many ways to describe the duration of a strong ground motion (Bommer and Martínez-
Pereira, 1999), the two most common definitions are bracketed duration and significant duration (Afshari and 
Stewart, 2016). The scope herein is limited to the significant duration, since it is often the preferred definition 
used in the literature (Chandramohan et al., 2016). It is defined as follows: 

 𝐷𝑠$% = 𝑡% − 𝑡$ (1) 

 
𝑥 =

100%
𝐼&

2 [𝑎(𝑡)]!𝑑𝑡
"#

#
 (2) 

where tx and ty are the time stamps on a Husid plot (Husid, 1969) at which x and y percent of the total Arias 
intensity, Ia, occurs (as defined in Eq. (2) for x and similarly for y). The most common values of x and y adopted 
in the literature are {x, y} = {5%,75%} and {x, y} = {5%, 95%}, subsequently referred to as DS575 and DS595, 
respectively, where only Ds595 will be discussed herein.  
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Dávalos and Miranda (2019) proposed FIV3 as a novel IM that showed promising results regarding its 
efficiency and sufficiency on characterising the collapse performance of buildings. It is briefly summarised 
mathematically as follows: 

 𝐹𝐼𝑉3 = max9𝑉',)&$* + 𝑉',)&$! + 𝑉',)&$+, <𝑉',),-* + 𝑉',),-! + 𝑉',),-+<= (3) 

 
𝑉'(𝑡) = >2 �̈�./(𝜏)𝑑𝜏,

"0∝∙3

"
			∀𝑡 < 𝑡4-5−∝∙ 𝑇H (4) 

where Vs(t) is a series of incremental velocities, IVs, computed using time segments with duration α·T via Eq. 
(4), Vs,max1, Vs,max2, and Vs,max3, are the three local maxima IVs in Vs(t) and Vs,min1, Vs,min2, and Vs,min3, are the 
three local minima IVs in Vs(t), T, corresponds to the period of vibration of interest, tend corresponds to the last 
instant of time of the acceleration time series, and ügf corresponds to the filtered acceleration time series using 
a second-order Butterworth low-pass filter with a cut-off frequency, fc, equal to β·f, where β is a scalar input 
that controls the fc/f ratio. The α and β input parameters required to calculate Eq. (3) were chosen as 0.7 and 
1/f (or T), respectively, as these were the parameters chosen in the original study (Dávalos et al., 2020). 

3. Estimation of residuals 
To estimate the correlations between the aforementioned IMs, two important inputs are needed: a ground 
motion database and a GMM to predict the expected shaking intensity for these same rupture parameters. For 
each ground motion record in the database adopted, the residuals are computed as the difference between 
the actual observation (i.e., the ground motion record’s value of IM) and the predicted median value from the 
GMM; as illustrated in Figure 1 for two values of a spectral IM. These residuals are computed for all IM 
definitions and the correlation between these residuals is then quantified and modelled later in the paper. 

 
Figure 1. Schematic representation of correlation between total residuals, Δ. (Left) Predicted and empirical 

response spectrum for a single record and (Right) residuals of the same IM from a set of records 

Regarding the GMM adopted in this study, the estimated IM distributions were obtained from a single 
generalised ground motion model (GGMM) applicable for active shallow crustal tectonic regions. This model 
is presented in O’Reilly et al. (2024), and not discussed in detail here. It was developed using the strong motion 
database from NGA-West2 (Ancheta et al., 2013) using an ANN framework. The appliable period range of the 
GGMM for Sa is 0.01 s – 5 s, while for FIV3 is 0.1 s – 4 s. Although other GMMs may have been used, only 
one was considered here to compute the residuals with reference to these predictions. Studies such as (Baker 
and Bradley, 2017) have examined the impact of considering different GMMs and strong motion databases 
when computing residuals and noted that while there is some difference, it is not considered to have a 
significant impact on the computed correlation coefficients. Therefore, it was deemed acceptable to use a 
single GGMM for all IMs examined herein. The ground motion records used are the same as those used to 
develop the GGMM from the NGA-West2 database (Ancheta et al., 2013), and have with the same filtering 
criteria as described in O’Reilly et al. (2024), amounting to 4131 ground motion records from 96 earthquakes. 
Therefore, the inter-event, intra-event and total residuals obtained from the GGMM were passed on to this 
study to compute the empirical cross-correlation of the IM residuals. 
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For further cross-validation of the GGMM, Figure 2 depicts the empirical distributions of the normalised inter- 
and intra-event residuals for Ds595, Sa(T=1s) and FIV3(T=1s). They are compared with the theoretical standard 
normal distribution and the Kolmogorov–Smirnov (KS) goodness-of-fit bounds at 5% significance level. The 
compatibility of the GGMM with this dataset is demonstrated by the observation that both inter- and intra-event 
empirical distributions lie within the KS goodness-of-fit bounds. Figure 2 depicts just three IMs but similar 
results were obtained for the other IMs considered. 

  
 

Figure 2. Empirical cumulative distribution of the (a) normalised inter-event; and (b) normalised intra-event 
residuals obtained using the GGMM. Comparison with the theoretical standard normal cumulative 

distribution and the KS bounds 

4. Methodology 
The general form of the generalised ground motion model is given as: 

 log*# 𝐼𝑀, = 𝑓,(𝑿, 𝜽) + 𝛿𝑏,𝜏, + 𝛿𝑤,𝜑, (5) 

where log10(IMi) is logarithm with base 10 of the ith IM; 𝑓,(𝑿, 𝜽) = 𝜇678$% 9:&|𝑿,= is the predicted mean output from 
the ANN model, taking as input a set of GM causal parameters (Mw, Rrup, etc.), denoted as X; θ are the 
‘calibrated coefficients’ of the ANN model (i.e., synaptic weights and biases); δbi and δwi are the normalised 
inter- and intra-event residuals of IMi, respectively; τi and φi are the inter- and intra-event logarithmic standard 
deviations. The total normalised residual, δi, and total standard deviation, σi, can be expressed as the sum of 
inter- and intra-event residuals as: 

 𝛿,𝜎, = 𝛿𝑏,𝜏, + 𝛿𝑤,𝜑, (6) 

Combining Eqs. (5) and (6), and rearranging, the total normalised residual for a specific ground motion g, δi,g, 
can be thought of as the number of standard deviations that the empirical IM is above the predicted mean 
value from the GMM, as illustrated in Figure 1 and formally described as: 

 
𝛿,,. =

log*# 𝐼𝑀,,. − 𝜇678$% 9:&|𝑿,𝜽

𝜎,
 (7) 

It can be seen that log*# 𝐼𝑀,,.  and 𝛿,,.  exhibit a linear relationship in Eq. (7), therefore by extension the 
correlation between two IMs, for given GM causal parameters X, is equal to the correlation between the 
normalised residuals, which in mathematical form translates to: 

 𝜌678$% 9:&|𝑿,𝜽,			 678$% 9:'|𝑿,𝜽 = 𝜌@&,			@' (8) 

Herein, for the sake of brevity, the correlation between two IMs will be simply referred to as 𝜌678$% 9:&,9:', where 
the conditioning on the GM causal parameters is implied, but is generally taken as independent. 
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Since δbi and δwi are assumed to be independent in the recently developed GGMM used for this study 
(Abrahamson et al., 2008), the correlations of inter- and intra-event residuals between different IMs can be 
estimated using the Pearson product-moment correlation coefficient formula: 

 
𝜌$,% =

∑ [(𝑥 − �̅�)(𝑦 − 𝑦Z)]-

[∑ [(𝑥 − �̅�)!]- ∑ [(𝑦 − 𝑦Z)!]-
 (9) 

where x and y are generic variables, corresponding to δbi and δbj for inter-event correlation for IMs i and j, and 
to δwi and δwj for intra-event correlation in this application; x̄ and ȳ are the sample means and Σ- is the 
summation over all n ground motion records. Therefore, Eq. (9) was used to compute the ρδbi,δbj and ρδwi, δwj 
correlations separately. From the definition of correlation coefficient, the correlation between total residuals 
can be estimated from the inter- and intra-event correlations as follows: 

 
𝜌@&,@' =

𝜌@A&,@A'𝜏,𝜏B + 𝜌@C&,@C'𝜑,𝜑B
𝜎,𝜎B

 (10) 

Baker and Bradley (2017) studied the dependence of IM correlations on causal parameters such as magnitude, 
distance and time-averaged shear wave velocity to 30m depth, Vs,30. They found no systematic variation of 
these correlations with any of these GM causal parameters and corroborated the typical assumption that IM 
correlations are independent of these parameters (Huang and Galasso, 2019; Tarbali et al., 2023). To account 
for the GMM uncertainty in the computed correlation coefficient, more than one GMM for active shallow crustal 
tectonic regions could be used with a logic tree; however, this was not applied here and only a single GMM 
was used. Additionally, only the point estimate of the correlation coefficient is utilised here, and not its 
uncertainty due to the finite number of recordings used in its determination. 

5. Artificial neural network models  
The results of the empirical correlations calculated were then used to fit predictive models. Traditionally these 
regression models (or predictive equations) are analytical functions with no strong physical basis and are 
developed simply to fit the observed data. Because of this lack of physical basis, which an analytical GMM 
may have based on knowledge of wave propagation, these analytical models might deviate significantly from 
the empirical correlation data in some places. To address this potential for poor fitting due to analytical 
functional form constraints, machine learning techniques were employed here. In particular, ANN (McCulloch 
and Pitts, 1943) was used to fit the data, eliminating the need to find suitable functional forms and keeps the 
misfit between observed and predicted data to a minimum. To the best of the authors’ knowledge, this 
technique has not been used to date for fitting predictive correlation models. To facilitate these models’ usage 
and implementation for users, they will be made publicly available via online repositories such as GitHub. 

To adopt this technique, an ANN architecture first needs to be set up and the optimal hyperparameters for 
each model need to be chosen. A schematic representation of the network is illustrated in Figure 3 for the 
example case of Sa-FIV3 correlation model, where the weights, W, and biases, b, of activation function are 
also depicted. Meanwhile the chosen hyperparameters for each model are listed in Table 1. Two hidden layers 
were required in most of the models to represent well the trends of the empirical data, with a high number of 
neurons per layer. Softmax, linear and sigmoid activation functions were employed, as they were found to be 
the optimal for the problem at hand. Also, a large number of epochs was chosen, as the goal here was to have 
the model predict values that are as close to the empirical ones as possible. In other words, overfitting here is 
desirable. Regarding the batch size, a small number was chosen in these models, since the training dataset 
is exceptionally small. The mean squared error (MSE) was selected as the loss function metric, which was 
minimised by the adaptive moment (ADAM) estimation algorithm (Kingma and Ba, 2014). 
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Figure 3. Schematic representation of ANN architecture for the case of Sa-FIV3 correlation model 

 
Table 1. Key hyperparameters and general architecture of the adopted ANN correlation model 
 
Correlation model Sa-FIV3 Sa-Sa FIV3-FIV3 FIV3-Ds595 Sa-Ds595 
Number of hidden layers 2 2 1 2 2 
Activation functions linear → 

softmax → 
linear → 

linear 

linear → 
sigmoid → 
sigmoid → 

linear 

linear → 
softmax → 

linear 

linear → 
softmax → 
linear → 

linear 

linear → 
softmax → 
softmax → 

linear 
Number of neurons per 
hidden layer 50 & 30 60 & 30 300 30 & 30 60 & 40 

Epochs 700 1000 3000 400 1500 
Batch size 16 16 16 4 4 

 

6. Results 
6.1. Empirical results and model estimates 
Past studies, such as Bradley (2011b), for example, have shown that the distribution of the correlation 
coefficient, which includes both finite sample size and GMM uncertainty, can be represented by the normal 
distribution. In this study, only results for the mean correlation coefficients are presented.  

The most common correlation studied here is that of Sa-Sa, since studies such as Baker and Jayaram (2008) 
have investigated this and proposed existing models. This correlation model will be discussed further in the 
next section with reference to existing models. Instead, Figure 4 first presents the observed empirical 
correlations between Sa and FIV3, where the correlation values range from 0.32 to 0.96. Since these IMs are 
period-dependent in their definition, the correlation coefficient is plotted as a surface for all combinations of 
period values. These results indicate that FIV3 of most periods are highly correlated with Sa(1s), which is the 
IM recommended by HAZUS (2003) to be used for seismic assessment of bridges in the US. Also shown in 
Figure 4 are the corresponding predictions by the proposed ANN model, it can be seen that the proposed 
correlation model can capture the empirical data very well. 
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Figure 4. Empirical and corresponding predicted correlation coefficients between Sa and FIV3 

Figure 5 illustrates the empirical and predicted correlation coefficients between Ds595 and FIV3. Firstly, it can 
be observed that the correlation between these two IMs is negative, with values ranging from -0.275 for the 
lowest period FIV3 to about -0.08 for the highest period FIV3. The trend is monotonically increasing and 
plateauing after an FIV3 of period 2 s. These results suggest that a ground motion with a higher-than-expected 
FIV3 will, on average, have a lower than usual significant duration. This is possibly because the ground motion 
has released all of its energy within a few strong velocity pulses rather than over a long duration. The trend is 
very similar to the correlation between Sa and Ds595. All in all, the empirical results suggest that FIV3 is more 
correlated with Sa than Ds595. 

Regarding inter-IM correlation, Figure 6 shows the correlations of FIV3 to itself at different periods, with 
correlation coefficients ranging from 0.84 to 1, which is suggesting that FIV3 is strongly correlated to itself. 
Figure 7 illustrates this same data slightly differently whereby specific slices of Figure 6 are shown. Also shown 
are the Sa-Sa correlations that will be discussed in the next section, where this relative comparison illustrates 
that FIV3 is much more correlated to itself across different periods than Sa. This signifies that FIV3 can be 
treated as almost a period-independent IM, in a similar way that peak ground acceleration has been used 
traditionally, but not entirely. 

 
Figure 5. Empirical and corresponding predicted correlation coefficients between Ds595 and FIV3 
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Figure 6. Empirical and corresponding predicted correlation coefficients between FIV3 of different periods 

 
Figure 7. Empirical correlation coefficients between Sa-Sa and FIV3-FIV3 for three values of Tj 

6.2. Comparison with existing correlation models 
Two out of the five total IM cross-correlation models developed within this study are well documented in 
literature. Therefore, two well-established models were selected for comparison. For the case of Sa-Sa 
correlations, the work of Baker and Jayaram (2008) is referred to, where for the case of Sa-Ds595, the work of 
Bradley (2011a) was used. To the best of the authors’ knowledge, there are no available correlation models 
of FIV3 with any other IM or with itself, which is a novelty of this study. 
 
From Figure 8 it can be observed that the correlations predicted by the Baker and Jayaram (2008) model 
somewhat deviate from the empirical ones computed here. This may be due to several factors, the first of 
which is the different in ground motion databases used, where that study used the NGA-West1 database with 
an approximately 2500 recordings available at moderate periods, whereas this study utilised the NGA-West2 
database with 4131 records. The second factor relates to the GMM model from which the residuals were 
computed, which differed to that adopted here. Lastly, the plot shows the analytical function fitting, hence the 
expected errors involved in functional form identification can also be anticipated. Meanwhile, the correlations 
predicted by the ANN model developed in this study are almost identical to the empirical data. This is seen 
through the general pattern of the correlation model, which closely follows that of the empirical data. This was 
very encouraging to see since it illustrates the utility of ANN models in this regard, which have yet to be 
employed for this purpose. 
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Figure 8. Empirical and predicted Sa-Sa correlation of the ANN and Baker and Jayaram (2008) models 

It can be generally observed that short-period spectral accelerations exhibit the strongest correlations, which 
is well-captured in both models. The precision of the predictive ANN model and the difference from the Baker 
and Jayaram (2008) model can be better appreciated in Figure 9, where the correlation coefficients are plotted 
between Sa(Ti) and Sa(Tj) for four values of Tj. It can be seen that the proposed ANNN model matches the 
empirical data very well across all periods of vibration. The model of Baker and Jayaram (2008) matches quite 
well when Ti is close to Tj. However, when the inter-period distance increased, the model begins to 
underpredict the correlation. The impact of this underprediction on ground motion selection via conditional 
spectrum (Baker, 2011) would be that the variance around the target mean would be slightly higher, meaning 
that the selected ground motions would be more disperse than they perhaps should be. For structures where 
this spectral content at periods away from the conditioning period is relevant, it may result in an overprediction 
of structural demands. 

 
Figure 9. Correlation coefficients between Sa(Ti) and Sa(Tj) for four values of Tj 

In the case of significant duration, Figure 10 shows that the empirical correlation with Sa increases (i.e., takes 
less negative values) with increasing vibration period. The increase is monotonically increasing, except for the 
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period range between 0.1-0.3 s, where the slope is momentarily negative. This is caused by a sudden small 
increase in correlation for Sa(0.1s). Same observations were also noticed by previous studies (Bradley, 2011a; 
Baker and Bradley, 2017), but may be a consequence of the available data rather than an underlying physical 
feature. Nevertheless, this behaviour is regressed by a smoothed, monotonically increasing, curve. Regarding 
the comparison with the Bradley (2011a) model, the trend is very similar, but the correlations computed herein 
are shifted downwards by about 0.1 across the whole range of Sa periods. This is likely due to the difference 
in the ground motion database used (NGA-West1 versus NGA-West2) and the different GMMs employed. 
Also, the total number of ground motions utilised in that study was 1842. The fact that correlation between 
Ds595 and high-period IMs (i.e., Sa(T>2s) and FIV3(T>1s)) is relatively small, suggests that the majority of their 
dependence is captured by the median GMM of these IMs. Generally, duration exhibits negative correlation 
with low-period IMs. 

 
Figure 10. Empirical and predicted Sa-Ds595 correlation of the ANN and Bradley (2011a) models 

7. Conclusions 
This paper presented the empirical correlations for a given set of ground motion causal parameters, between 
three different types of IMs, namely FIV3, Sa and Ds595. In total five correlation models based on a novel 
approach via artificial neural networks (ANN) were proposed, and it was shown how they fit the empirical data 
very well. Two well-established correlation models from the literature were also compared with the ANN-based 
correlation models proposed here. Based on this, the following conclusions can be drawn out from this 
research: 

• The FIV3 presented relatively strong correlation with Sa, especially in the range of Sa(T=0.6s) to 
Sa(T=3s), which indicates that FIV3 is best correlated with moderate-period IMs, and weakly correlated 
with low-period IMs; 

• The correlation between significant duration Ds595 and FIV3 showed the same trend as that of Ds595 and 
Sa but with a slightly weaker correlation (i.e., taking values closer to 0); 

• It was found that FIV3 is strongly correlated with itself, with the correlation values not dropping below 
0.84, essentially making this IM almost period-independent, which could be useful for more general and 
regional studies; 

• The empirical results obtained in this study present some small differences when compared to existing 
models, attributed mainly to the differences in the filtered database and GMM used. 

• The proposed predictive ANN models estimate the empirical data with high precision, while facilitating 
a seamless application since the model will be readily available online. 
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